Publications

  1. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas,
    S. Zhang, B. Militzer, L.X. Benedict, F. Soubiran, P. Sterne, K.P. Driver, J. Chem. Phys., 148, 102318 (2018). (
    arXiv)

  2. First-principles Equation Of State and Shock Compression Predictions of Warm Dense Hydrocarbons,
    S. Zhang, K.P. Driver, F. Soubiran, and B. Militzer, Phys. Rev. E, 96, 013204 (2017). (
    arXiv)

  3. First-principles simulations of warm dense lithium fluoride,
    K.P. Driver and B. Militzer, Phys. Rev. E, 95, 043205 (2017). (
    arXiv)

  4. Comparison of path integral Monte Carlo simulations of helium, carbon,nitrogen, oxygen, water, neon, and silicon plasmas,
    K. P. Driver, F. Soubiran, S. Zhang B. Militzer, High Energy Density Physics, 23, 81 (2017).

  5. Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors
    F. Soubiran, B. Militzer, K. P. Driver, S. Zhang, Phys. Plasma, 24, 041401 (2017).

  6. Equation of state and shock compression of warm dense sodium.A first-principles study
    The Journal of Chemical Physics 146, 074505 (2017); arXiv

  7. Path integral Monte Carlo simulations of warm dense sodium,
    S. Zhang, K. P. Driver, F. Soubiran, B. Militzer, High Energy Density Physics, 21, 16 (2016).

  8. First-principles prediction of the softening of the silicon shock Hugoniot curve,
    S. X. Hu, B. Militzer, L. A. Collins, K. P. Driver and J. D. Kress, Phys. Rev. B 94, 094109 (2016). (arXiv)

  9. First-principles equation of state calculations of warm dense nitrogen,
    K. P. Driver and B. Militzer, Phys. Rev. B 91, 064101 (2016). (arXiv)

  10. First-principles equation of state and electronic properties of warm dense oxygen,
    K. P. Driver, F. Soubiran, Shuai Zhang, and B. Militzer, J. Chem. Phys. 143, 164507 (2015). (arXiv)

  11. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements,
    B. Militzer and K. P. Driver, Phys. Rev. Lett. 115, 176403 (2015). (arXiv)

  12. First-principles simulations and shock Hugoniot calculations of warm dense neon,
    K. P. Driver and B. Militzer, Phys. Rev. B 91, 045103 (2015).

  13. Equations of state and stability of MgSiO3 perovskite and post-perovskite phases from quantum Monte Carlo simulations,
    Y. Lin,R.E. Cohen, S. Stackhouse, K.P. Driver, B. Militzer, L. Schulenburger, and J. Kim, Phys. Rev. B, 90, 184103 (2014). (arXiv)

  14. Multiphase equation of state for carbon addressing high pressures and temperatures,
    Lorin X. Benedict, Kevin P. Driver, Sebastien Hamel, Burkhard Militzer, Tingting Qi, Alfredo A. Correa, A. Saul, and Eric Schwegler, Phys. Rev. B, 89, 224109 (2014). (arXiv)

  15. H4O and other hydrogen-oxygen compounds at giant-planet core pressures,
    Shuai Zhang, Hugh F. Wilson, Kevin P. Driver, and Burkhard Militzer, Phys. Rev. B 87, 024112 (2013).

  16. All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas ,
    K. P. Driver and B. Militzer, Phys. Rev. Lett. 108, 115502 (2012). (arXiv)

  17. Phase transformation in Si from semiconducting diamond to metallic Beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress
    R. G. Hennig, A. Wadehra, K. P. Driver, W. D. Parker, C. J. Umrigar, and J. W. Wilkins, Phys. Rev. B, 82, 014101 (2010).

  18. Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica,
    K. P. Driver, R. E. Cohen, Zhigang Wu, B. Militzer, P. Lopez Rios, M. D. Towler, R. J. Needs, and J. W. Wilkins, Proc. Natl. Acad. Sci. USA, 107, 9519-9524 (2010). http://researchnews.osu.edu/archive/silicaqmc.htm

  19. Nanometer-scale composition measurements of Ge/Si(100) islands
    M. Floyd,Y. Zhang, K.P. Driver, Jeff Drucker, P.A. Crozier, D.J. Smith, Appl. Phys. Lett. 82, 1473 (2003).

  20. Evolution of Ge/Si(100) island morphology at high temperature
    Y. Zhang, M. Floyd, K.P. Driver, Jeff Drucker, P.A. Crozier, D.J. Smith, Appl. Phys. Lett. 80, 3623 (2002).

  21. Polarization of Light By Reflection and the Brewster Angle,
    Ouseph P.J., Driver K., Conklin J., Am. J. Phys. 69, 1166 (2001).