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VMC and DMC Energy vs. Strain Curves

Quantum Monte Carlo MethodPrevious Work: Shear Modulus Softening in Stishovite
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QMC Benchmarks Shear Modulus Softening: Stishovite to CaCl2

•The volume of 280 Bohr3 corresponds to a pressure near the transition to 
CaCl2 (pressure of 50 GPa).

•The volume of 314 Bohr3 corresponds to stishovite at zero pressure.
•QMC error bars must be ∼1 meV in order to determine curvature accurately.
•At this accuracy level, QMC is 1200 times more expensive than DFT.

•Silica, the simplest of Earth's silicates, exhibits a rich phase diagram including rutile 
structured phases, such as stishovite, that are common among several minerals.
•Diamond anvil cell measurements can be challenging due to pressure and temperature 
gradients in samples, but have provided accurate data for silica.
•Theoretical efforts to study silica require accurate, first principle methods in order to make 
reliable predictions.
•Density Functional Theory (DFT) predictions can strongly depend on the functional form 
for some silica properties, such as transition pressures [1], but have generally been reliable.
•The accuracy of the many-body method, Quantum Monte Carlo (QMC) [2], can make 
reliable predictions of high-pressure silica phases and other minerals where experimental 
measurements are scarce. QMC is 100-1000 times more costly than DFT.
•In this work we test the feasibility of QMC to calculate the elastic constants and predict 
the softening of the shear modulus under pressure in the stishovite to CaCl2 transition.

Calculating Elastic Constants with Strain-Energy Relations
Strain the crystal lattice 

Strain-energy relation for a volume conserving strain [9]

Elastic constants are proportional to the curvature of E(ε)
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• At 50 GPa stishovite transforms to a CaCl2-type structure [3].
• Stishovite to CaCl2 transition is driven by instability of the elastic shear modulus, c11-c12 [4].
• X-ray diffraction experiments show the shear constant, c11-c12, vanishes under pressure [5].
•The instability is due to softening of the B1g Raman mode, changing to the Ag mode at 50 GPa [6].
•In general, tetragonal rutile-type crystals, such as stishovite, exhibit anomalous B1g mode softening 
with increasing pressure. B1g induces a structural phase transition at pressure pT to a orthorhombic 
CaCl2-type structure by coupling with the shear elastic constant [7].
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Trial Wave Function and Jastrow Factor

Variational Monte Carlo (VMC) and Wave Function Optimization

Diffusion Monte Carlo (DMC)

•A Jastrow factor multiplies orbitals providing particle correlation.
•J includes two and three body correlation terms and plane wave expansion 
in electron-electron separation to fill out corners of the simulation cell.
•Density functional theory provides the Slater determinant of orbitals (D), 
which contains the exchange part of the wave function.
•Two freely available DFT codes, ABINIT and PWSCF, produce orbitals 
for QMC in the b-spline basis.
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•Our work utilizes the CASINO [8] QMC code with pseudopotentials.
•VMC uses Monte Carlo integration to calculate energies of ΨT and 
optimizes ΨT via the variational principle.
•Minimizing the variance of the energies optimizes the Jastrow parameters.

•DMC uses a many-body Hamiltonian to stochastically project out the 
ground state from ΨT

•Calculation of elastic constants requires total energies with small 
statistical error bars.

•The crystal lattice vectors are strained by a few per cent for several different cell volumes. 
•Volume-conserving strains avoid pressure correction terms for easier computation of 
pressure dependence on elastic constants [4]. 

•Volume conserving strain of the tetragonal stishovite lattice corresponds to changing one 
lattice vector by δ and another by -δ (ε11=δ, ε11=-δ).
•Changing the magnitude of δ, produces a energy vs. strain curve.

•Solving the strain-energy relation for the elastic constants yields a depence on the second 
derivative of the energy with respect to strain (i.e. the curvature of an E vs. strain curve).
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•Fitting a polynomial to computed E(ε) points and determining the curvature of the fit at 
zero strain for each volume gives the elastic constants.

●● X-ray data [5]
--- Theory, LAPW [4]

•QMC benchmarks DFT for shear modulus softening of stishovite.
•The shear modulus disappears near the transition pressure (50 GPa) in both QMC and DFT.
•Radial X-ray values tend to lie below theoretical values, agreeing best near 0 and 50 GPa.
•DMC agrees best with zero pressure Brillouin scattering.
•QMC results required 3 million CPU at hours at NERSC.
•The high computational expense of DMC prohibited calculations at intermediate pressures.

Experimental 
error bar

Raman data from ref 6.
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