Interior Structure of Uranus and Neptune — Why Don’t
These Planets Generate Dipolar Magnetic Fields?
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Big Questions that my Group Helps Address

1. How did our solar system form?

2. What are giant planets made of?

3. How do materials behave at high
pressure?




Magnetic Fields in our Solar System

Dipolar Dipolar Dipolar Dipolar




Earth cores forms because iron and silicates are

immiscible. Magnetic Field in Liquid Outer Core

Wahl & BM (2015). At high
temperature, elemental iron
and MgO will mix.
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Earth has a solid inner core. So the Melting Temperature

of Iron Constrains the Temperature of Earth’s Core.

D. Alfe et al., Nature (2000) :
F. Gonzalez, BM, Physical Review | 4
Research 5 (2023) 033194
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Gravity Field Measurements Difference in Precision between

represented by harmonics J, single Flyby and Orbiting Mission

00 2n
V(r, u) = GTM[I = E(%) J2nPon (,u)]

Pioneer+Voyager Jupiter flybys  Voyager Uranus flyby

J, = 14697 + 1 J, = 3510+ 0.72

Jo =—584 15 J,=-3361+1
Measurements of Juno orbiter

J, = 14696.5735 £+ 0.0017

J. = —586.6085 1+ 0.0024

Je = 34.2007 £ 0.0067

Uranus orbiter would increase
gravity precision by factor 1000.




Models with Helium Rain for Jupiter and Saturn

Molecular hydrogen
(helium depleted)

O MolecularhydrogenO
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core

Rock-ice
core

Jupiter’s interior with dilute core (Militzer et al., 2022) Saturn’s interior



Stevenson & Salpeter (1977): Hypothesis

to Explain
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Evidence of hydrogen-heliumimmiscibility
atJupiter-interior conditions

https://doi.org/10.1038/s41586-021-03516-0  S. Brygoo'™, P. Loubeyre'™, M. Millot? J. R. Rygg?®, P. M. Celliers?, J. H. Eggert?, R. Jeanloz* &
G. W. Collins®

Received: 13 October 2015
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Planets cool convectively: So we assume most of their

interior layers are isentropic and homogeneous
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What are ab initio simulations?

2

Schrédinger equation: _% 62 lp(7)+V(7) w(?) _E I,U(?)

Look for an antisymmetric solution (Pauli exclusion):

X1(x1) xol(xi) - xw(xy)
. _. 1 |xa(x2) xao(x2) -+ xwi(x2)
\I’(Xl,XQ,...,XN)=— .
N! :
i(xn) xel(xn) -+ xw(xn)

Density functional theory:

Generalized Gradient approximation (PBE)
Hybrid functionals (HSE for conductivity)
Quantum Monte Carlo

Simulation of molecular hydrogen Methane - molecular orbitals



Calculate Free Energies and Entropy with Thermodynamic

Integration. Here Applied to Molecular Hydrogen
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) . Inside the immiscibility region, the simulations
energies that cannot be derived from

standard MD simulations. For hydrogen, may spontaneously phase separate. Look for
see BM, Phys. Rev. B 87 (2013) 014202. drop in g(r) at large distances.




Determine Phase Transformations Either

or

Perform MD simulations
and wait for the system
change to a new phase

* Heat until it melts

* Heat until it mixes

* Two-phase simulations

e Spontaneous phase
separation

Gibbs free energy calculations

U) = Uy + A(Up — Uy)

Gprr = Fprr + PpprV

U =Up AU = Uy |
_ Gorr = Forr+PorrV

Gibbs free energy (Which is more stable?)

TSprr = Uppr — Fprr

Entropy (ionic & electronic) (Construct isentropes)



Uranus

Mass = 14.5 Earths
Radius = 4.0 Earths
Density = 1.3 gram/cm3
Distance: 19.2 AU

Visible Light:

Featureless in visible light, because clouds are below
haze layer of methane (colder than Saturn).

Orbital Period: 84 years

Rotation period: 17.2 hours.

Infrared Light (almost no thermal emission):




Neptune

Mass = 17 Earths

Radius = 3.9 Earths
Density = 1.76 x water
Distance: 30 AU

Orbital Period: 163 years




Open questions:
Tilt of Uranus’ rotation axis (giant impact hypothesis)
Different CH, abundances (Uranus: 2.3 %, Neptune 1.4%)
Uranus has almost no intrinsic heat flux (thermal boundary layer?)
Uranus has a regular set of satellites. Neptune has only two in inclined orbits. (Triton is
almost planet-like.)
Interior cornposition uncertain (“lce giants” misnomer)
Unusual magnetic fields




Disclaimer: Due to lack of time, the following

innovative papers cannot be discussed in this talk

M Podolak, A Weizman, M Marley, Comparative models of Uranus and Neptune. Planet.
Space Sci. 43, 1517-1522 (1995).

K Soderlund, M Heimpel, E King, J Aurnou, Turbulent models of ice giant internal
dynamics: Dynamos, heat transfer, and zonal flows. Icarus 224, 97—-113 (2013).

R Helled, P Bodenheimer, The formation of Uranus and Neptune: Challenges and
implications for intermediate-mass exoplanets. The Astrophys. J. 789, 69 (2014).

K Soderlund, S Stanley, The underexplored frontier of ice giant dynamos. Philos. Trans.
Royal Soc. A 378, 20190479 (2020).

E Bailey, DJ Stevenson, Thermodynamically governed interior models of Uranus and
Neptune. The Planet. Sci. J. 2, 64 (2021).

L Stixrude, S Baroni, F Grasselli, Thermal and tidal evolution of Uranus with a growing
frozen core. The Planet. Sci. J. 2, 222 (2021).

N Movshovitz, JJ Fortney, The promise and limitations of precision gravity: Application to
the interior structure of Uranus and Neptune. The Planet. Sci. J. 3, 88 (2022).



1986: Voyager 2 arrives at Uranus and finds it has

. Why might that be?

Podolak, Hubbard, Stevenson write in “Uranus” edited by Bergstrahl et al.

The most obvious and most popular explanation of the unusual field
geometry is that we arrived at Uranus during a reversal. Indeed, the observed
field geometry has some similarities to that inferred for Earth during geomag-
netic reversals: a tilted dipole and an unusually large quadrupole (Merrill and
McElhinny 1983). The problem with this explanation is that if Uranus is
similar to Earth, then the probability of encountering the planet during a
reversal event is only about 1% (the Earth’s field takes a few thousand years
to reverse, yet the time between reversals is very long, typically a few hun-
dred thousand years). If we accept the reversal explanation, then we must
either accept an improbable chance or say that Uranus differs from the Earth
in some very substantial way. The latter explanation seems attractive but dif-




1986: Voyager 2 arrives at Uranus and finds it has
. Why might that be?
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in some very substantial way. The latter explanation seems attractive but dif-




Ruzmaikin & Starchenko (1991): U+N generate

their magnetic fields in a

On the Origin of Uranus and Neptune Magnetic Fields

A. A. RUZMAIKIN

Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Moscow Region, USSR

AND

S. V. STARCHENKO

Schmidt Institute of Physics of the Earth, Moscow, USSR

Received July 6, 1990; revised April 9, 1991

The Uranus and Neptune magnetic fields discovered by Voyager
2 can be explained by a dynamo acting in a thin conductive convec-
tive shell existing at the bottom of the icy oceans of the planets.
The main helicity and differential rotation are the source for the
dynamo which effectively excites nonaxisymmetric modes of the
mean magnetic field. Estimates of the magnetic field amplitude in
the nonlinear regime and of the inclination between the magnetic
moment and the rotation axis are given. © 1991 Academic Press, Inc.

In this paper a model for the generation of the mean
magnetic fields of Uranus and Neptune by action of the
mean helicity of the convective motions and differential
rotation is constructed. The field is generated in a_thin

shell where the conditions for self-excitation and the rates

of growth for the axisymmetric and nonaxisymmetric
modes are closed. One result in particular is that axisym-
metric and nonaxisymmetric components of the dipole
magnetic field are of the same order. The sum of these



Stanley & Bloxham (2004): Numerical Simulations of

matched Observed Fields

Thick-shell dynamo o

Earth: Happy
dipolar field 1

Earth core:
1/31) Outer core
2) Inner core

Power / dipole power

L Uranus

Thin-shell dynamo 0.02

1 2 3
1 Degree /

53 U+N model (Outer hydrogen layer excluded)
1) Thin upper dynamo layer
2) Lower less dynamo-active layer

Simulation of
shell dynamo




Stanley & Bloxham (2004 and 2006):

Most preferred Interior Structure Model

b d U+N’‘s magnetic fields are primarily generated in a thin

’ outer layer
This layer a homogeneous, electrically conducting fluid
The inner-outer radius boundary is approximately at 2/3.
The inner layer is non-convecting, electrically conducting
fluid
They prefer a stably stratified electrically conducting fluid
but a non-convecting, conducting solid might also work.

U OO0

Open questions:

1) What is the composition of the upper layer?
2) Whatis the composition of the lower layer?
3) Why is the lower layer not convecting?



AtmOSﬁheres of Uranus and Neptune

are Rich in Carbon (CH, was detected)
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M. Ross in Nature in 1981: Diamond Rain in U+N

The ice layer in Uranus and
Neptune—diamonds in the sky?

Marvin Ross

University of California, Lawrence Livermore National Laboratory,
Livermore, California 94550, USA

Many of the current models of Uranus and Neptune postulate a
three-layer structure, consisting of an inner rocky core, a middle
‘ice’ layer of fluid, H,0, CH,, NH, and an outer hydrogen-
helium layer of solar composition’. The estimated pressures and
lemperatures of the ice layer ranges irom about 6 Mbar nnd

2,200 K st the outer |celhydrogen—helmm boundary 1 poim out
here that shockwave experiments on these liquids®®, as well as

theoretical studies®”’, imply that the H,O and NH, in the ice
layer are almost totally ionized and the CH, has been pyrolysed
to carbon, possibly in the metallic or diamond form®”’

n recent years shock-wave experiments have been carried

which predicted that above 0.20 Mbar and 2,000 K, methane is

converted into elemental carbon and molecular hydrogen.
K ece - - - > A " $) " V vl



Benedetti et al. (1999): Laser Heated CH, forms
Diamonds at 10-50 GPa and 2000-3000 K

Reaction Products

Unreacted Methane




Experimental and Theoretical Work on

”Synthetlc Uranus” Mixture of H:0:C:N = 28:7:4:1

Received 15 Apr 2010 | Accepted 19 Jan 2011 | Published 22 Feb 2011
Chemical processes in the deep |nter|or of Uranus
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Our paper on polymeric state of methane

under shock conditions (2012)

PHYSICAL REVIEW B 86, 224113 (2012)

Ab initio simulations of hot dense methane during shock experiments

Benjamin L. Sherman,! Hugh F. Wilson,? Dayanthie Weeraratne,! and Burkhard Militzer>?
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Figure 8: Four snapshots from our ab initio simulatro Ng b U » SO m e
and temperature forms long hydrocarbon chains. The blue am bb/@ Or e

and hydrogen atoms, respectively. From left to right as the simulations—p P. of
carbon-carbon bonds (red lines) increase and longer and longer polymers form.



From my 2013-2016 NSF proposal
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Kraus et al. (2017): Laser Compressed Hydrocarbons

form Diamonds at High Pressure and Temperature

NATURE ASTRONOMY LETTERS
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Cheng, Hamel, Bethkenhagen (2022): Diamond

Formation from Hydrocarbon Mixtures

ar d £ g9 4
X31 50GPa4000K _xg.- X, | 400GPa3000K _y- ¢ 80001 — T diamond S —t Gk
= =11 X
S X S X M 0.7 —
< 3% ~ 1 XK
Q X506 Q HosX
50— W : e %Oim ——— 7000 - [ S
b 0.0 05 e
07 M
—_ ’_\_0.2 i /’ 0.4 e e—
E-0.5 1 E 6000 A b3
= S _ ]
> >0 0.2 —0
2 2 /
310K C_iCideal @ o 31064/ ) ,
——C S0 1" S0 / ——-uCideal 4 Up 5000 1 - e
-@- UC coexistence —0.8 1 ,' ——LC S0 —ut S0 '
_1'5 7 T T T ] 2 T T T T
c ] f
90 L eeee ideal 0.00 4 - ideal 4000 -
— 1>¢ PS1 xc= 027, 0.3 — SEPS1 xe= 0.24,0.35 E—
g = s0 g X PS2 xc=0, 0.12 Experiments D no D
§_0.1 - §_0 .y Benedetti CH4 X
o, o 3000 4 Hirai CH4 - —N
g g Kadobayashi MH
& £ Kraus C8HS8 X
3E__0 2 4 § Hartley C2H4 ><
: —0.10 1 Marshall epoxy O
...... . : 2000 T T T T T
T ) ! Y : J ! y 0 100 200 300 400 500 600
0.0 0.2 0.4XC0.6 0.8 1.0 0.0 0.2 0.4XC0.6 0.8 1.0

P [GPa]



Simulations Predict H,O and H, are miscible.

Expenments do not under some conditions.

0.12—
| 20um i
N 3 i
5 P = 0.08 -
0,. - i
KT aehe o = < I
* o S 004—
S [w]
Q [
S  0.00k=-
= B &
~ o
>
| Y
400 [ > 3 “
| m -
~ 300 GL) L
5 c —0.08
2 200 w i
2 i
£ 100 ‘ —-0.12f
2500 3,ooo 3,500 4,000 4,500 -
Wavenumber (om™) Ui ‘ -0. 18 | |4 . | | T
FgureZ\Synthet fluid inclusi n olivine formedat 950 °Cand 2.3GPa | 0.8 .0

at Fe-FeO buffer conditions. Only e type of fluid inclusion is visible,

Simulations predict H,O and H, to be miscible in U+N’s interior.




Doubly Superionic State of C-N-O-H Compounds:

Hydrogen and nitrogen mobile while oxygen is not.

Heated up structures from Conway et al. and Naumova et al. (2021)
Kyla de Villa,
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http://arxiv.org/abs/2410.17499

Can Superionic Water explain the nondipolar fields?

- 8
6 6
—
X 5 v Superionic
D4 :
= : B
o’ = B .,
= 3 = .
2
1

Molecular

TE |
0.1 1 10

p [Mbar]|

Fig. 1. Phase diagram of water up to high pressures as relevant for the interiors of
Uranus and Neptune. The solid (ice VII and X), fluid (molecular, ionic, plasma), and

Cavazoni et al. (1999) Redmer at al (2011)



T (K)

Because Cavazoni had started from ice X, all
superionic calculations assumed a bcc structure
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Bcc-to-fcc transition of Superionic Water Predicted
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H. F. Wilson, M. L. Wong, B. Militzer, Physical Review Letters 110 (2013) 151102



Millot et al. 2019: FCC Superionic ice generated

with laser shock experiments
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Matsulema et al. 2022: Superionic ice flows easily
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Nettelmann et al. (2016): Thermal boundary layer

to explain Uranus’ low luminosity
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Fig. 9. Uranus three-layer structure models with thermal boundary layer that fit 1 10
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the gravity data and the luminosity. (Left) Model U15-II, with a maximum change of

Nonadiabatic models combine
lce mixture H,O: CH,: NHy = 7.7:4:1 compositional gradients and much
higher interior temperatures



Helled et al. (2020): Three layer: H, H,O and rock;
sharp and fuzzy boundaries

phase boundary phase boundary

ices & rocks ices & rocks ices & rocks ices & rocks
separated mixed

Fig. 4 Sketches of the possible internal structures of an ice giant. It is unclear whether Uranus and Neptune
are differentiated and whether the transition between the different layers are distinct or gradual: (a) separation



Neuenschwander et al. (2024): Convective/Non-

convective models with high interior temperatures
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Machine learning becomes popular. These
methods learn forces from ab initio simulations
and then makes them much faster




Performed much bigger simulations with Machine-

Learning Accelerated Ab
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Performed much bigger simulations with Machine-

Learning Accelerated Ab initio Simulations: 540 atoms
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| e EOS: 840+12N-+48C+396H
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Smoking gun came from simulation with 840+12N+48C+396H = 12X [ 7H,0 + 4CH, + NH; ]

The Smoking Gun

s this real?

1) Would anyone confirm this result with ab initio simulations? So we
turned off all machine learning and reconfirmed the findings!

2) Can this be confirmed with laboratory experiments?

3) Will a Uranus orbiter detect a signature in the planet?




Phase separation in simulation with
840+12N+48C+396H = 12X [ 7H,0 + 4CH, + NH; ]




Phase Separation Confirmed with simulations
840+12N+48C+232H (164 H atoms were removed)




Pair Correlation g(r) and Structure S(k)

confirm phase separation
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Pair Correlation g(r) and Structure S(k)

confirm phase separation
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Concentric Maclaurin Spheroid (CMS) theory

for rotating bodies in hydrostatic equilibrium

Model parameters:

 EOS from ab initio simulations:
p = p(P,T,composition)
* Locations of the boundaries between
the four layers
* Hydrogen fraction in the H,0+H layer
 Hydrogen fraction in the C-N-H layer

\ A%

* Use CMS to compute R, M, J, J, Je with high accuracy.
* Concentric Maclaurin Spheroid method

Hubbard, ApJ (2013) .
* Accelerated CMS method,

Militzer et al., ApJ (2019)




Currently Favored Interior Models

Hydrogen + helium
m=0.04

R=0.82
P=6.6 GPa

R=0.50
P=214GPa

C,N.H

8 2 19

CNH mixture
m=0.34

CN,H- R=0.16
Rocky core Feabiless
m=0.03 P=824 GPa T1par=76 K
M=14.536 M

(b) Uranus  P=17:14:40h

Hydrogen + helium
yered m=0.02

R=0.88
P=3.9 GPa

R=0.53
P=261 GPa

P=658 GPa

P=1487GPa  Typ,=72 K
M=17.148 M
(c) Neptune  P=16:06:40 h



Assumptions for Interior Structure Models

Simplifying model assumptions
1) Complete phase separation between H,0-rich layer and C-N-H layer

2) H,0 and H, mix and form a homogeneous and convecting layer

3) H,O-rich layer is on top of C-N-H layer (So oil does not always float on top of water.)

4) H,O-rich layer received its extra hydrogen from C-N-H but may not have absorbed it all.

Hydrogen + helium
m=0.04

5 R=0.82
P=6.6 GPa
R=0.50
C.NH Y
Bz P=214GPa
CNH mixture

m=0.34

CsNan r§ R=0.16

Rocky core P G
m=0.03 O P=824 GPa

(b) Uranus

Uranus Neptune
Measured J x 106 3510.99 £0.72 3529 £+ 45 Hydrogen + helium
Model Js x 106 3510.99 3529.40
Measured J4 x 10° —-33.61%1 —-35.8£2.9 R-0.88
Model  J4 x 106 —33.61 —35.80 P=3.9GPa
Model  Jg x 106 0.4859 0.5314
Hl 1.923 =~ H3.80 2.245 ~ H4‘5O
Ho 0.5015 ~ CgN2Hjg 0.4418 ~ CgN2Hq7
Hs 0.2053 ~ CgN2Hsg 0.1055 ~ CgN2oH4 P=261GPa
r1 [PU] 0.8156 0.8858 CNH mixture
ro [PU] 0.4897 0.5232
r3 [PU] 0.1471 0.2159
r2/r1 (volumetric radii) 0.6010 0.5915 Rzt P=658 GPa
r2/T40 GPa (Volumetric radii) 0.6680 0.6613 m=0.14
(el 0.373 0.400 O p=1487 GPa
MH absorbed [PU] 0.05606 0.06902
M released [PU] 0.05607 0.06906 (c) Neptune




Monte Carlo Ensembles of U+N models

that match the Gravity Measurements

T T T T T [ T T T ] 0.60 [ N | 3
Sy OUranus data Neptune data o | B r. 5
s — Uranus model ~ — Neptune model B N
510~ 0 7 1 0551 -
g 1 S .
o [ - ; B i
E _JL R @0 0.50 I ]
© 0.5 - x (_: — e B ]
o SIRE ~ [ ]Uranus model =
_8 °;o 5 al 0.45 [ ° Neptune model th |
& | : - i
B H‘ﬁ | ° | i i
0.0 I B I 0.40 L ! | ! | ! -
3500 3600 3500 3600 —-38 —-36 -—-34 -32
10° X /> 106 X /> 106 X Ja
B. Militzer _ Uranus Neptune
Open QMC source code: Model J2 x 10 3510.99 3529.40
ben ' Measured J; x 106 33611 _35.84+ 2.9
http://militzer.berkeley.edu/QMC |  \ogel 7, x 10° _3361 —35.80
10.5281/zenodo0.8038144 Model  Jg x 106 0.4859 0.5314




Monte Carlo Ensembles of U+N models that fulfill
more constraints (radius 2/3 is compatible with solar)




Monte Carlo Ensembles of U+N models that fulfill

more constraints (radius 2/3 is compatible with solar)
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Monte Carlo Ensembles of U+N models that fulfill
more constraints (radius 2/3 is compatible with solar)
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Monte Carlo Ensembles of U+N models that fulfill

more constraints (radius 2/3 is compatible with solar)
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Are the different materials electrical conductors?
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Yes, all three are good “metals”

| =——— 021C12N3H99 P=289GPa

T T T T T ] T 1
084H282 P=244GPa

—— 084H396 P=256GPa
021C12N3H99 P=232GPa

C4gN12H114 P=200GPa
C43N12H114 P=251GPa

E - Erermi (V)

O,1N;C,Hgg_mixture
7000 or 11000 S/cm (derived with HSE)

Water-hydrogen mixture
Ogs4Hz28 @and OgyHags

8000 or 21000 S/cm



Our Model for U+N’s Interior Structure is Consistent

with Stanley & Bloxham’s Predictions

b E(U+N’s magnetic fields are primarily generated in a thin outer
1 E(Iay-er | | |
This layer a homogeneous, electrically conducting fluid
E(The inner-outer radius boundary is approximated at 2/3.
M/The inner layer is non-convecting, electrically conducting fluid
They prefer a stably stratified electrically conducting fluid but
a non-convecting, conducting solid might also work. e

2/3

Open questions:

1) Whatis the composition of the upper layer? A conducting, fluid mixture of H,0 and H,

2) What is the composition of the lower layer? Conducting carbon-nitrogen-hydrogen fluid

3) Why is the lower layer not convective? The amount of hydrogen varies with depth.
Leading to density stratification that prevents convection.



Helioseismology

NASA SOHO P modes



Helioseismology
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Helioseismology

P modes: “Pressure” waves

* Primary restoring force is pressure
* High-frequency limit: acoustic waves

1000

F modes: “Fundamental” modes

v (uHz)

* Are the limit of p modes as radial order ]
N goes to zero (long-wavelength limit)

e Also known as surface gravity wave, no nodes in
interior. Deforms like a soccer ball

* No compression involved.

G Modes: “Gravity” waves 100}

* Low frequency waves Christensen-Dalsgaard

* Primary restoring force is buoyancy & . . T
* Requires stable stratification, no convection 1 10 100 1000




Saturn’s Rings are a Seismometer, Spiral Density Waves

wsg2.21 " r,= 82209.0 km]

Convective
Envelope
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_Opticaldepth

Fuller (2014)

20 -15 10 -5 O
radius - r_ (km)
Hedman & Nicolson (2013)



Take-Away Points

1. Ab initio simulations predict a O-C-N-H mixture to
phase separated into a O-H and a C-N-H fluid at high
pressure

2. Constructed planet model for Uranus and Neptune.
Their icy mantles of have two layers: an upper H,O-
H, layer and lower stably stratified C-N-H layer

3. Under these assumptions we can match the gravity
and magnetic field measurements

4. A Uranus spacecraft should bring a Doppler imager.




