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We perform all-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics
(DFT-MD) calculations to explore warm dense matter states of oxygen. Our simulations cover a wide density-
temperature range of 1 − 100 g cm−3 and 104 − 109 K. By combining results from PIMC and DFT-MD, we
are able to compute pressures and internal energies from first-principles at all temperatures and provide a
coherent equation of state. We compare our first-principles calculations with analytic equations of state,
which tend to agree for temperatures above 8×106 K. Pair-correlation functions and the electronic density of
states reveal an evolving plasma structure and ionization process that is driven by temperature and density.
We observe temperature-ionization suppression of the 1s state with increasing density, while higher states
are efficiently ionized by pressure and temperature. Finally, the computed shock Hugoniot curves show an
increase in compression as the first and second shells are ionized.

I. INTRODUCTION

Elemental oxygen is involved in a wide range of physics
and chemistry throughout the universe, spanning from
ambient biological processes to extreme geological and
astrophysical processes. Created during stellar nucle-
osynthesis, oxygen is the third most abundant element in
the universe and the most abundant element on Earth.
In addition to its importance for life-sustaining processes,
its thermodynamic, physical, and chemical properties are
important to numerous fields of science. As such, oxygen
has inspired a vast number of laboratory experiments and
theoretical studies, which have revealed an exotic phase
diagram with a number of interesting anomalies in its
thermal, optical, magnetic, electrical, and acoustic prop-
erties due to its molecular and magnetic nature1.

At ambient conditions, oxygen exists as a diatomic
molecular gas with each molecule having two unpaired
electrons, resulting in a paramagnetic state. X-ray
diffraction and optical experiments reveal that oxygen
condenses to a molecular solid with a rich phase diagram
made up of at least ten different structural phases1–6.
Static compression experiments on the solid have been
performed up to 1.3 Mbar and 650 K1. First-principles
simulations have been used to search for structural phases
up to 100 Mbar6. The transition to the highest-pressure
phase discovered so far occurs at 96 GPa, which also
drives the solid to become metallic7–10. A superconduct-
ing phase has also been found at 0.6 K near 100 GPa11.
In addition, the solid phases exhibit a complex magnetic
structure with various degrees of ordering due to a strong
exchange interaction between O2 molecules that becomes
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FIG. 1. Temperature-pressure conditions for the PIMC and
DFT-MD calculations along six isochores corresponding to
the densities of 2.48634, 3.63046, 7.26176, and 14.8632, 50.00,
and 100.00 g cm−3. The dash-dotted line shows the Hugoniot
curve for an initial density of ρ0 = 0.6671 g cm−3. For com-
parison, we also plotted the interior profile of the current-day
Sun14 as well as the profile of a 25 M⊙ star at the end of
its helium burning time15. The green dashed lines show the
interior profile of a 0.6 M⊙ carbon-rich white dwarf at three
different stages of its cooling process16–18

suppressed under pressure and acts in tandem with weak
van der Waals forces holding the lattice together1,12,13.
Warm, dense, fluid states of oxygen have also been of

great interest due to the presence of oxygen-rich com-
pounds in inner layers of giant planets19–23, stellar in-
teriors24,25, astrophysical processes26–28, and detonation
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products29. Oxygen is produced via helium burning30 in
the late stages of Sun-like star’s life as well as in more
massive stars. The larger weight of oxygen relative to
hydrogen and helium drives its settlement towards the
deepest regions of a star. An accurate equation of state
(EOS) is needed to properly describe the behavior of the
core of the star as well as the timing of the different
nuclear processes that are highly sensitive to tempera-
ture30,31. Eventually, intermediate mass stars evolve into
white dwarfs, which have most of their hydrogen and he-
lium depleted, leaving a remnant composed mostly of car-
bon and oxygen. The core density of a white dwarf16 is
likely higher than 105 g/cm3. The cooling process of the
white dwarf is very similar from one white dwarf to an-
other and the luminosity is used for cosmological chronol-
ogy32,33. However, the accuracy of chronology measure-
ments depends on a proper description of the thermody-
namic behavior of both carbon and oxygen34. Moreover,
as the third most abundant element in the solar system35,
oxygen has a significant presence in planet interiors and
can exist in a partially ionized state in giant planets.
Therefore, the electronic and thermodynamic behavior of
oxygen at high pressures and temperatures is important
for obtaining the correct fluid and magnetic behavior in
planetary, stellar, and stellar remnant models36.

Shock-compressed fluid states of oxygen have been
measured under dynamic compression up to 1.9 Mbar
(four-fold compression) and 7000 K, which revealed a
metallic transition in the molecular fluid at 1.2 Mbar and
4500 K37. Density functional theory molecular dynamics
(DFT-MD) simulations suggest that disorder in the fluid
lowers the metallization pressure to as low as 30 GPa
with molecular dissociation above 80 GPa38. Measure-
ments of Hugoniots have reached 140 GPa39–41 and indi-
cate that oxygen molecules become dissociated in a pres-
sure range of 80-120 GPa at temperatures over several
thousand Kelvin. Using classical pair-potential simula-
tions42–44, some general agreement is found with the mea-
sured Hugoniots, however, a fully quantum-mechanical
treatment is needed to accurately simulate the electronic
and structural behavior of the fluid.

Historically, a lack of development in first-principles
methodology for the warm dense matter regime has
largely prevented highly accurate theoretical exploration
of fluid oxygen at extreme conditions, and, hence, fur-
ther improvements in EOS and Hugoniot curves. DFT-
MD has been used to explore the structural and elec-
tronic behavior of the fluid state38,45 up to temperatures
of 16×103 K and densities up to 4.5 g cm−3. Massacrier et
al.

46 investigated the properties of oxygen for a density-
temperature range of 10−3

−104 g cm−3 and 105−106 K,
using an average ion model. They showed, for instance,
that the complete pressure-ionization of fluid oxygen can-
not be expected until the system reaches a density of
1000 g cm−3.

In order to address the challenges of first-principles
simulations for warm dense matter, we have been devel-
oping the path integral Monte Carlo (PIMC) method-

ology in recent years for the study of heavy elements
in warm, dense states47–50. Here, we apply our PIMC
methodology along with DFT-MD to extend the first
principles exploration of warm dense fluid oxygen to a
much wider density-temperature range (1–100 g cm−3

and 104–109 K) than has been previously explored by
DFT-MD alone.
In Section II, we cover details of the PIMC and DFT-

MD methodology specific to our oxygen simulations. In
Section III, we discuss the EOS constructed from PIMC
and DFT-MD and show that both methods agree for at
least one of temperature in the range of 2.5×105–1×106

K. In section IV, we characterize the structure of the
plasma and the ionization process by examining pair-
correlation functions of electrons and nuclei as a func-
tion of temperature and density. In section V, we discuss
the electronic density of states as a function of density
and temperature to provide further insight into the ion-
ization process. In section VI, we discuss predictions for
the shock Hugoniot curves. Finally, in section VII, we
summarize and conclude our results.

II. SIMULATION METHODS

PIMC47,51 is currently the state-of-the-art first-
principles method for simulating materials at tempera-
tures in which properties are dominated by excited states.
It is the only method able to accurately treat all the ef-
fects of bonding, ionization, exchange-correlation, and
quantum degeneracy that simultaneously occur in the
warm dense matter regime52. PIMC is based on thermal
density matrix formalism, which is efficiently computed
with Feynman’s imaginary time path integrals. The den-
sity matrix is the natural operator to use for comput-
ing high-temperature observables because it explicitly in-
cludes temperature in a many-body formalism.
The PIMC method stochastically solves the full, finite-

temperature quantum many-body problem by treating
electrons and nuclei equally as quantum paths that
evolve in imaginary time without invoking the Born-
Oppenheimer approximation. For our PIMC simulations,
the Coulomb interaction is incorporated via pair density
matrices derived from the eigenstates of the two-body
Coulomb problem51,53 appropriate for oxygen. Further-
more, in contrast to DFT-MD as described below, the
efficiency of PIMC increases with temperature as parti-
cles behave more classical-like and fewer time slices are
needed to describe quantum mechanical many-body cor-
relations, scaling inversely with temperature.
PIMC uses a minimal number of controlled approxi-

mations, which become vanishingly small with increased
temperature and by using appropriate convergence of the
time-step and system size. The only uncontrolled ap-
proximation is the employment of a fixed nodal surface
to avoid the fermion sign problem54. Current state-of-
the art PIMC calculations employ a free-particle nodal
structure, which would perfectly describe a fully ionized
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system. However, we have shown PIMC employing free-
particle nodes even produces reliable results at surprising
low temperatures in partially ionized hydrogen55, car-
bon48, water48, and neon50. As a general rule, we find
free-particle nodes are sufficient for systems comprised of
partially-ionized 2s states48.

A sufficiently small PIMC time step is determined by
converging total energy as a function of time step until
the energy changes by less than 1.0%. We use a time
step of 1/256 Ha−1 for temperatures below 4×106 K and,
for higher temperatures, the time step decreases as 1/T
while keeping at least five time slices in the path integral.
In order to minimize finite size errors, the total energy is
converged to better than 0.4% when comparing 8- and 24-
atom simple cubic simulation cells. A typical calculation
uses a bisection level51 of 5 and achieves a statistical error
in the energy and pressure that is less than 0.1%.

For lower temperatures (T < 1×106 K), DFT-MD56 is
the most efficient state-of-the-art first-principles method.
DFT formalism provides an exact mapping of the many
body problem onto a single particle problem, but, in
practice, employs an approximate exchange-correlation
potential to describe many body electron physics. In the
WDM regime, where temperatures are at or above the
Fermi temperature, the exchange-correlation functional
is not explicitly designed to accurately describe the elec-
tronic physics57. However, in previous PIMC and DFT-
MD work on helium47 carbon48, and water48, and neon50,
DFT functionals are shown to be accurate even at high
temperatures.

DFT incorporates effects of finite electronic tempera-
ture into calculations by using a Fermi-Dirac function to
allow for thermal occupation of single-particle electronic
states58. As temperature grows large, an increasing num-
ber of bands are required to account for the increasing
occupation of excited states in the continuum, which typ-
ically causes the efficiency of the algorithm to become in-
tractable at temperatures beyond 1×106 K. Orbital-free
density functional methods aim to overcome such thermal
band efficiency limitations, but several challenges remain
to be solved59. In addition, pseudopotentials, which re-
place the core electrons in each atom and improve effi-
ciency, may break down at temperatures where core elec-
trons undergo excitations.

Depending on the density, we employ two different sets
of DFT-MD simulations for our study of oxygen. At
densities below 15 g cm−3, the simulations were per-
formed with the Vienna Ab initio Simulation Package
(VASP)60 using the projector augmented-wave (PAW)
method61. The VASP DFT-MD uses a NVT ensemble
regulated with a Nosé-Hoover thermostat. Exchange-
correlation effects are described using the Perdew-Burke-
Ernzerhof62 generalized gradient approximation. Elec-
tronic wave functions are expanded in a plane-wave basis
with a energy cut-off of at least 1000 eV in order to con-
verge total energy. Size convergence tests up to a 24-atom
simulation cell at temperatures of 10,000 K and above
indicate that total energies are converged to better than
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FIG. 2. Comparison of excess pressure relative to the ideal
Fermi gas plotted as a function of temperature for oxygen.

0.1% in a 24-atom simple cubic cell. We find, at tem-
peratures above 250,000 K, 8-atom supercell results are
sufficient since the kinetic energy far outweighs the inter-
action energy at such high temperatures. The number of
bands in each calculation is selected such that thermal
occupation is converged to better than 10−4, which re-
quires up to 8,000 bands in a 24-atom cell at 1×106 K.
All simulations are performed at the Γ-point of the Bril-
louin zone, which is sufficient for high temperature fluids,
converging total energy to better than 0.01% relative to
a comparison with a grid of k-points.
For densities above 15 g cm−3, we had to construct a

new pseudopotential in order to prevent the overlap of
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FIG. 3. Comparison of excess internal energies relative to
the ideal Fermi gas plotted as a function of temperature for
oxygen.

the PAW-spheres. We therefore used the ABINIT pack-
age63 for which it is possible to build a specific PAW-
pseudopotential using the AtomPAW plugin64. We built
a hard all-electron PAW pseudopotential with a cut-off
radius of 0.4 Bohr. We checked the accuracy of the pseu-
dopotential by reproducing the results provided by the
ELK software in the linearized augmented plane wave
(LAPW) framework65. With this pseudopotential we
performed DFT-MD with ABINIT for a 24-atom cell up
to 100 g cm−3 and 1×106 K. The hardness of the pseu-
dopotential required an plane-wave energy cut-off of at

least 6800 eV.

III. EQUATION OF STATE RESULTS

In this section, we report our EOS results for six densi-
ties of 2.48634, 3.63046, 7.26176, and 14.8632, 50.00, and
100.00 g cm−3 and for a temperature range of 104 − 109

K. The six isochores are shown in Figure 1 and are dis-
cussed in more detail in section VI. These conditions are
relevant for the modeling of stars and white dwarfs as
can be seen in Figure 1.
Figure 2 compares pressures obtained for oxygen from

PIMC, DFT-MD, and from analytic Chabrier-Potekhin66

and Debye-Hückel67 models. Pressures, P , are plotted
relative to a fully ionized Fermi gas of electrons and ions
with pressure, P0, in order to compare only the excess
pressure contributions that result from particle interac-
tions. In general PIMC and DFT-MD pressures differ by
at most 2%, and often much less for at least one tem-
perature in the range of 2.5 × 105 − 1 × 106 K. PIMC
converges to the weakly interacting plasma limit along
with the Chabrier-Potekhin and Debye-Hückel models.
Figure 3 compares internal energies, E, plotted relative

to the internal energy of a fully ionized Fermi gas, E0.
PIMC and DFT-MD results for excess internal energy
differ by at most 2%, and much less in most cases for at
least one temperature in the range of 2.5× 105 − 1× 106

K. PIMC extends the energies to the weakly interacting
plasma limit at high temperatures, in agreement with the
Potekhin and Debye-Hückel models67.
Together, Figs. 2 and 3 show that the DFT-MD and

PIMC methods form a coherent equation of state over
all temperatures ranging from the regime of warm dense
matter to the weakly interacting plasma limit. The agree-
ment between PIMC and DFT-MD indicates that DFT
exchange-correlation potential remains valid even at high
temperatures and that the PIMC free-particle nodal ap-
proximation is valid for a sufficient ionization fraction of
the 2s state. The analytic Chabrier-Potekhin and Debye-
Hückel models agree with PIMC to temperatures as low
as 8×106 K. The Debye-Hückel model appears to have
better agreement with PIMC at low densities, while the
Chabrier-Potekhin model agrees better with PIMC at
high densities. Neither analytic model includes bound
states and, therefore, cannot describe low temperature
conditions.
Table I provides the densities, temperatures, pressures,

and energies used to construct our equation of state. The
VASP DFT-MD energies have been shifted by 74.9392
Ha/atom in order to bring the PAW-PBE pseudpoten-
tial energy in alignment with all-electron energies that
we report with PIMC computations. The shift was cal-
culated by performing an all electron atomic calculation
with the OPIUM code68 and a corresponding isolated-
atom calculation in VASP.
Comparison of the PIMC and DFT-MD pressures and

internal energies in Table I indicates that there is roughly
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FIG. 4. Nuclear pair-correlation functions for oxygen from
PIMC over a wide range of temperatures and densities.

a 2% discrepancy in their predicted values at tempera-
tures of 1× 106 K. Potential sources of this discrepancy
include: (1) the use of free particle nodes in PIMC; (2)
the exchange-correlation functional in DFT; and (3) the
use of a pseudopotential in DFT. While it is difficult to
determine the size of the nodal and exchange-correlation
errors, comparison of our VASP calculations with all-
electron, PAW ABINIT calculations at 1 × 106 K indi-
cates that roughly one third of the discrepancy is due to
the use of frozen 1s core in the VASP DFT-MD pseu-
dopotential, which leaves out effects of core excitations.
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FIG. 5. Comparison of PIMC and DFT nuclear pair-
correlation functions for oxygen at a temperature of 1×106

K and a density of 14.8632 g cm−3.

IV. PAIR-CORRELATION FUNCTIONS

In this section, we study pair-correlation functions69

in order to understand the evolution of the fluid struc-
ture and ionization in oxygen plasmas as a function of
temperature and density.
Figure 4 shows the nuclear pair-correlation functions,

g(r), computed with PIMC over a temperature range of
2×106−1.034×1012 K and a density range of 2.486−100.0
g cm−3. Atoms are kept farthest apart at low temper-
atures due to a combination of Pauli exclusion among
bound electrons and Coulomb repulsion. As temperature
increases, kinetic energy of the nuclei increases, making
it more likely to find atoms at close range, and, in addi-
tion, the atoms become increasingly ionized, which grad-
ually minimizes the effects of Pauli repulsion. As density
increases, the likelihood of finding two nuclei at close
range is significantly increased. For the highest density
and lowest temperature, the peak in the pair-correlation
function reaches a value of 1.2, indicating a moderately
structured fluid.
Figure 5 compares the nuclear pair-correlation func-

tions of PIMC and DFT at a temperature of 1×106 K in
an 8-atom cell at a density of 14.8632 g cm−3. The over-
lapping g(r) curves verify that PIMC and DFT predict
consistent structural properties.
Figure 6 shows the integral of the pair correlation func-

tions, N(r), which represents the average number of elec-
trons within a sphere of radius r around a given nucleus.
At the lowest temperature, 1×106 K, we find that the
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FIG. 6. Number of electrons contained in a sphere of radius, r,
around an oxygen nucleus. PIMC data at four temperatures
is compared with the analytic 1s core state.

1s core state is always fully occupied, as it agrees closely
with the result of an isolated 1s state. As temperature
increases, the atoms are gradually ionized and electrons
become unbound, causing N(r) to decrease. As density
increases, an increasingly higher temperature is required
to fully ionize the atoms, indicating that the 1s ioniza-
tion fraction decreases with density. The 1s state is thus
not affected by pressure ionization in the density range
of consideration. As we will explain the density of states
section, the ionization of the 1s state is suppressed be-
cause with increasing density, the Fermi energy increases
more rapidly than energy of the 1s state.

Figure 7 shows nucleus-electron pair correlation func-
tions. Electrons are most highly correlated with the nu-
clei at low temperature and high density, reflecting a
lower ionization fraction. As temperature increases, elec-
trons are thermally excited and gradually become un-
bound, decreasing their correlation with the nuclei. As
the density is increased, the electrons are more likely to
reside near the nuclei confirming that the temperature-
ionization of the 1s state is suppressed with increasing
density as seen in Figure 6.
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FIG. 7. The nucleus-electron pair-correlation functions for
oxygen computed with PIMC.

Figure 8 shows electron-electron pair correlations for
electrons having opposite spins. The electrons are most
highly correlated for low temperatures, which reflects
that multiple electrons occupy bound states at one nu-
cleus. As temperature increases, electrons are thermally
excited, decreasing the correlation among each other.
Correlation at short distances increases with density, con-
sistent with a lower ionization fraction.
Figure 9 shows electron-electron pair correlations for

electrons with parallel spins. The positive correlation
at intermediate distances reflects that different electrons
with parallel spins are bound to a single nucleus. For
short separations, Pauli exclusion takes over and the
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FIG. 8. The electron-electron pair-correlation functions for
electrons with opposite spins computed with PIMC.

functions decay to zero. As density increases above
14.865 g cm−3, pressure ionization causes the correlation
to approach that of an ideal fluid. We interpret this
change as pressure ionization of the second and third elec-
tron shells. As temperature increases, electrons become
less bound, which also causes the correlation to become
more like an ideal fluid.
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FIG. 9. The electron-electron pair-correlation functions for
electrons with parallel spins computed with PIMC.

V. ELECTRONIC DENSITY OF STATES

In this section, we report DFT-MD results for the elec-
tronic density of states (DOS) of fluid oxygen as a func-
tion of temperature and density in order to gain further
insight into the temperature- and pressure-ionization.

In order to closely examine the physics of pressure-
ionization of the 1s and higher states, we computed DOS
curves using the all-electron, PAW potential we created
for use with the ABINIT code. Figure 10 shows exam-
ples of the DOS for oxygen at densities between 2.49 and
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100 g cm−3 at a fixed temperature of 100,000 K. For com-
parison, we show the result for an isolated oxygen atom.
Since we used the all-electron pseudo-potential we can
see the bands related to the 1s or K shell. For the iso-
lated atom, we also clearly see the 2s or LI as well as
the LII and LIII states. The locations of the K and LI

shells for the isolated atom are consistent with the bind-
ing energies of 19.97 and 1.53 Ha respectively that can
be found in the literature70.

As density increases, the L sub-shells are shifted to-
wards higher energy, merging together as they shift into
the continuum. This effect is referred to as the pres-
sure ionization of oxygen, also described by Massacrier et
al.

46. As the density increases, the K shell is also shifted
to higher energies and broadens significantly. Neverthe-
less, the K shell remains a well defined state even at
100 g cm−3. The Fermi energy is also shifted towards
higher energy values as the density increases. We ob-
serve that the Fermi energy shifts more than the K-shell
energy, and, hence, the energy difference between the 1s
states and unoccupied states increases with the density.
Therefore, it is more difficult to temperature-ionize the K
shell at higher density and no pressure-ionization occurs
for the 1s state. This is consistent with the observations
we made for the electron-nuclei pair distribution function
in Figure 7.
Figure 11 shows the temperature dependence of the

DOS at a fixed density of 7.26176 g cm−3. Results were
obtained from VASP by averaging over at least 10 un-
correlated snapshots chosen from a DFT-MD trajectory.
Smooth curves were obtained by using a 4×4×4 k-point
grid and applying a Gaussian smearing of 2 eV. The
eigenvalues of each snapshot were shifted so that the
Fermi energies align at zero, and the integral of the DOS
is normalized to 1. The DOS curves show a large peak
representing the atomic-like 2s and 2p states, followed by
a dip in states, which is then followed by a continuous
spectrum of conducting states. The Fermi energy plays
the role of the chemical potential in the Fermi-Dirac dis-
tribution, which shifts towards more negative values as
the temperature is increased. Because we subtract the
Fermi energy from the eigenvalues, the peak shifts to
higher energies with increasing temperature. The fact
that the peaks are embedded into a dense, continuous
spectrum of eigenvalues indicates that they are conduct-
ing states.

VI. SHOCK COMPRESSION

Dynamic shock compression experiments are widely
used for measuring equation of state and other physical
properties of hot, dense fluids. Commonly, shock experi-
ments determine the Hugoniot, which is the locus of final
states that can be obtained from different shock veloci-
ties. A few Hugoniot measurements have been made for
oxygen in an effort to understand its metallic transition
and determine its role in astrophysical processes39–41.
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Density functional theory has been validated by experi-
ments as an accurate tool for predicting the shock com-
pression of different materials45,71.

In the course of a shock wave experiment, a material
whose initial state is characterized by an internal energy,
pressure, and volume, (E0, P0, V0), which changes to a fi-
nal state denoted by (E,P, V ) while conserving mass,
momentum, and energy. This leads to the Rankine-

Hugoniot relation72,

H = (E − E0) +
1

2
(P + P0)(V − V0) = 0. (1)

Here, we compute the Hugoniot for oxygen from the
first-principles EOS data we showed in Table I. For the
initial state of the principal Hugoniot curve, we com-
puted the energy of an oxygen molecule at P0 = 0, E0

= −150.247327 Ha/O2, and chose V0 = 318.612 Å3. We
chose a density of 0.6671 g cm−3 for solid oxygen in the
cubic, γ phase. The resulting Hugoniot curve has been
plotted in T -P and P -ρ spaces in Figs. 1 and 12, respec-
tively.
Samples in shock wave experiments may be pre-

compressed inside of a diamond anvil cell in order to
reach much higher final densities than possible with a
sample at ambient conditions. This technique allows
shock wave experiments to probe density-temperature
consistent with planetary and stellar interiors73. There-
fore, we repeat our Hugoniot calculation starting with
initial densities ranging from a 1 to a 25-fold increase
of the ambient density. Figure 12 shows the resulting
family of Hugoniot curves. While starting from the am-
bient density leads to a maximum shock density of 3.5
g cm−3, a 25-fold pre-compression yields a much higher
maximum shock density of 71 g cm−3, as expected. How-
ever, such extreme densities can be reached more easily
with triple shock experiments as our example in Figure 12
illustrates.
Figure 13 shows the temperature dependence of the

precompression density ratio for the five representative
Hugoniot curves in Figure 12. In the high-temperature
limit, all curves converge to a compression ratio of 4,
which is the value of a nonrelativistic ideal gas. We also
include of the Hugoniot curve computed with the rel-
ativistic, fully-ionized Chabrier-Potekhin model, which
shows the relativistic correction in the high-temperature
limit. In general, the shock compression is determined
by the excitation of internal degrees of freedom, which
increases the compression, and interaction effects, which
decrease the compression74. Consistent with our results
for hydrogen, helium47, and neon50 we find that an in-
crease in the initial density leads to a slight reduction
in the shock compression (Figure 13) because particles
interact more strongly at higher density.
The shock-compression ratio also exhibits two maxima

as a function of temperature, which can be attributed to
the ionization of electrons in the first and second shell.
On the principal Hugoniot curve, the first maximum of
ρ/ρ0=4.77 occurs at temperature of 3.59× 105 K (30.94
eV), which is above the first ionization energy of the
oxygen atom, 13.61 eV, but less than the second ioniza-
tion energy, 35.12 eV. A second compression maximum
of ρ/ρ0=5.10 is found for a temperature of 2.87× 106 K
(247.32 eV), which can be attributed to the ionization
of the 1s core states of the oxygen ions. The 1s ion-
ization energy is 871.41 eV. This is consistent with the
ionization process we observe in Figure 6, where charge
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density around the nuclei is reduced over the range of
2 − 8 × 106 K. Since DFT-MD simulations, which use
pseudopotentials to replace core electrons, cannot access
physics about core ionization, PIMC is a necessary tool
to determine the maximum compression along the prin-
ciple Hugoniot curve.

VII. CONCLUSIONS

In this work, we have combined PIMC with DFT-MD
to construct a coherent EOS for oxygen over wide range
of densities and temperatures that includes warm dense
matter and plasmas in stars and stellar remnants. The
two methods validate each other in temperature range of
2.5×105–1×106 K, where both yield consistent results.
We compared our equation of state at high tempera-
ture with the analytic models of Chabrier-Potekhin and
Debye-Hückel. The deviations that we identified under-
line the importance for new methods like PIMC to be de-
veloped for the study of warm dense matter. Nuclear and
electronic pair-correlations reveal a temperature- and
pressure-driven ionization process, where temperature-
ionization of the 1s state is suppressed while other states
are efficiently ionized as density increases up to 100
g cm−3. Changes in the density of states confirms the
temperature- and pressure-ionization behavior observed
in the pair-correlation data. Lastly, we find the ionization
imprints a signature on the shock Hugoniot curves and
that PIMC simulations are necessary to determine the
state of the highest shock compression. Our and Hugo-
niot and equation of state will help to build more accurate
models for stars and stellar remnants.
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fland and O. Shimomura, Phys. Rev. Lett. 74, 4690 (1995).

9S. Serra, G. Chiarotti, S. Scandolo, and E. Tosatti, Phys. Rev.
Lett. 80, 5160 (1998).

10B. Militzer and R. J. Hemley, Nature 443, 150 (2006).
11K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets, and K. Amaya,
Nature 393, 767 (1998).

12J. B. Neaton and N. W. Ashcroft, Phys. Rev. Lett. 88, 205503
(2002).

13S. Klotz, T. Strassle, A. L. Cornelius, J. Philippe, and T. Hansen,
Phys. Rev. Lett. 104, 115501 (2010).

14J. N. Bahcall and M. H. Pinsonneault, Phys. Rev. Lett. 92,
121301 (2004).

15Private communication: courtesy of Cyril Georgy, University of
Keele (United Kingdom).

16G. Fontaine and H. M. V. Horn, Astrophys. J. Suppl. S. 31, 467
(1976).

17G. Fontaine, H. C. J. Graboske, and H. M. V. Horn, Astrophys.
J. Suppl. S. 35, 293 (1977).

18B. Hansen, Phys. Rep. 399, 1 (2004).
19A. Burrows, W. B. Hubbard, J. I. Lunine, and J. Liebert, Rev.
Mod. Phys. 73, 719 (2001).

20W. B. Hubbard, A. Burrows, and J. I. Lunine, Annu. Rev. As-
tron. Astr. 40, 103 (2002).

21T. Guillot, Annu. Rev. Earth Pl. Sc. 33, 493 (2005).
22H. F. Wilson and B. Militzer, Astrophys. J. 745, 54 (2012).
23S. Zhang, H. F. Wilson, K. P. Driver, and B. Militzer, Phys.
Rev. B 87, 024112 (2013).

24C. Hansen and S. Kawaler, Stellar Interiors: Physical Principles,

Structure, and Evolution, Astronomy and astrophysics library,
Vol. 1 (Springer-Verlag New York, 1994).

25J. J. Fortney, The Astrophys. J. Lett. 747, L27 (2012).
26K. Lodders and J. B. Fegley, Icarus 155, 393 (2002).
27M. Zoccali, A. Lecureur, B. Barbuy, V. Hill, A. Renzini, D. Min-
niti, Y. Momany, A. Gmez, and S. Ortolani, Astron. Astrophys.
457, L1 (2006).

28M. H. Wong, J. I. Lunine, S. K. Atreya, T. Johnson, P. R. Ma-
haffy, T. C. Owen, and T. Ecnrenaz, Rev. Mineral. Geochem.
68, 219 (2008).

29C. Needham, Blast Waves, Shock Wave and High Pressure Phe-
nomena (Springer Berlin Heidelberg, 2010).

30G. Wallerstein, I. Iben, P. Parker, A. Boesgaard, G. Hale,
A. Champagne, C. Barnes, F. Käppeler, V. Smith, R. Hoffman,
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TABLE I. EOS table of oxygen pressures and internal ener-
gies at density-temperature conditions simulated in this work.
The numbers in parentheses indicate the statistical uncertain-
ties of the DFT-MD and PIMC simulations.

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

2.48634a 1034730000 12031695(879) 44227(3)
2.48634a 99497670 1155684(608) 4242(2)
2.48634a 16167700 185881(73) 674.57(29)
2.48634a 8083850 91166(21) 323.90(9)
2.48634a 4041920 43037(12) 138.71(6)
2.48634a 2020960 17999(15) 16.06(7)
2.48634a 998004 7336(9) −41.43(4)
2.48634a 748503 5118(11) −50.66(4)
2.48634a 500000 3044(11) −59.30(4)
2.48634a 250000 1189(12) −66.94(5)
2.48634b 1000000 7339(6) −42.41(2)
2.48634b 750000 5119(5) −51.84(18)
2.48634b 500000 3049(5) −60.58(3)
2.48634b 250000 1183(3) −69.293(3)
2.48634b 100000 341(1) −73.635(1)
2.48634b 50000 161(1) −74.571(1)
2.48634b 30000 97(1) −74.811(1)
2.48634b 10000 38(1) −75.015(1)

3.63046a 1034730000 17566926(1904) 44223(5)
3.63046a 99497670 1685108(750) 4235(2)
3.63046a 16167700 269993(107) 669.34(28)
3.63046a 8083850 132427(35) 320.24(11)
3.63046a 4041920 61955(18) 132.56(6)
3.63046a 2020960 25689(28) 10.67(8)
3.63046a 998004 10569(14) −42.93(4)
3.63046a 748503 7433(14) −51.81(4)
3.63046a 500000 4414(15) −60.15(4)
3.63046b 1000000 10507(14) −44.13(2)
3.63046b 750000 7443(8) −52.79(5)
3.63046b 500000 4483(5) −61.412(6)
3.63046b 250000 1831(3) −69.658(2)
3.63046b 100000 605(2) −73.686(2)
3.63046b 50000 305(1)1 −74.565(1)
3.63046b 30000 202(2) −74.797(1)
3.63046b 10000 104(1) −74.992(1)

7.26176a 1034730000 35142831(2985) 44227(4)
7.26176a 99497670 3374099(1777) 4237(2)
7.26176a 16167700 538875(196) 664.43(26)
7.26176a 8083850 261808(75) 311.36(11)
7.26176a 4041920 120041(34) 119.03(5)
7.26176a 2020960 49637(51) 1.74(7)
7.26176a 998004 20964(31) −45.54(4)
7.26176a 748503 15122(42) −53.17(5)
7.26176a 500000 9262(24) −61.27(3)
7.26176a 250000 4405(44) −67.78(5)
7.26176b 1000000 21066(20) −46.49(4)
7.26176b 750000 15232(17) −54.50(2)
7.26176b 500000 9415(10) −62.659(8)
7.26176b 250000 4271(6) −70.096(3)
7.26176b 100000 1832(6) −73.612(4)
7.26176b 50000 1209(4) −74.382(2)
7.26176b 30000 986(5) −74.606(2)
7.26176b 10000 749(1) −74.813(1)
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TABLE I. (Continued.)

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

14.8632a 1034730000 71917073(5787) 44217(4)
14.8632a 99497670 6899765(3226) 4230(2)
14.8632a 16167700 1096035(364) 655.35(24)
14.8632a 8083850 527445(141) 299.20(10)
14.8632a 4041920 237350(67) 103.41(5)
14.8632a 2020960 99599(98) −5.97(6)
14.8632a 998004 44297(52) −47.32(3)
14.8632a 748503 32595(59) −54.80(3)
14.8632a 500000 21447(56) −61.86(3)
14.8632b 1000000 45274(64) −47.95(4)
14.8632b 750000 33293(69) −55.76(4)
14.8632b 500000 21945(35) −63.21(1)
14.8632b 250000 11803(11) −69.884(4)
14.8632b 100000 6975(7) −72.907(3)
14.8632b 50000 5705(6) −73.590(2)
14.8632b 30000 5239(4) −73.815(1)
14.8632b 10000 4626(8) −74.057(1)

50.0000a 1034730000 241912168(8061) 44208(1)
50.0000a 99497670 23165568(7204) 4215(1)
50.0000a 16167700 3638714(751) 633.85(14)
50.0000a 8083850 1721016(318) 272.08(6)
50.0000a 4041920 768044(164) 78.29(3)
50.0000a 2020960 351315(214) −13.11(4)
50.0000a 998004 185345(210) −46.12(4)
50.0000c 1000000 187281(611) −47.36(11)
50.0000c 500000 118441(752) −60.27(11)
50.0000c 250000 91835(1078) −65.16(15)
50.0000c 100000 77796(541) −67.49(7)
50.0000c 50000 75320(609) −67.90(8)

100.000a 1034730000 483702750(18188) 44193(2)
100.000a 99497670 46258880(13163) 4201(1)
100.000a 16167700 7213882(1458) 617.35(13)
100.000a 8083850 3396956(706) 254.73(7)
100.000a 4041920 1553594(378) 68.31(4)
100.000a 2020960 793543(497) −10.07(5)
100.000a 998004 490625(1050) −40.28(10)
100.000c 1000000 490505(1367) −41.78(12)
100.000c 500000 369913(2987) −52.88(24)
100.000c 250000 326893(1556) −56.75(12)
100.000c 100000 302710(1091) −58.79(8)
100.000c 50000 298808(1064) −59.13(8)

aPIMC
bVASP-MD
cABINIT-MD with a small-core, PAW pseudopotentials


