Lowering of the Kinetic Energy in Interacting Quantum Systems
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Interactions never lower the ground state kinetic energy of a quantum system below the noninter-
acting value. However, at nonzero temperature, where the system occupies a thermal distribution
of states, interactions can reduce the kinetic energy. This can be demonstrated from a first order
weak coupling expansion. Simulations (both variational and restricted path integral Monte Carlo)
of the electron gas model and dense hydrogen confirm this and show that in contrast to the ground
state case, at nonzero temperature the population of low momentum states can be increased relative

to the free Fermi distribution. This effect is not seen in simulations of liquid ®He.

INTRODUCTION

It is a common assumption that the addition of inter-
actions to a noninteracting quantum system will broaden
the momentum distribution and increase the kinetic en-
ergy (proportional to the second moment of the momen-
tum distribution). An intuitive understanding of this
follows from perhaps the first example encountered in
studying quantum mechanics, the particle in a box, where
the kinetic energy scales as the box size L~2. More gen-
erally the kinetic energy, given by the average curvature
of the wavefunction, is expected to scale as the “local-
ization length” —2. Since interactions typically lead to an
increase in local order, i.e. increased “localization”, the
kinetic energy is expected to increase.

For condensed matter scientists, two well ingrained
many body examples of this, illustrated in Fig. 1, are
the broadening of the free Fermi ground state momentum
distribution due to electron repulsion and the depletion
of the zero momentum condensate in a strongly interact-
ing Bose system such as “He [1]. For the homogeneous
electron gas, Fig. 1a shows the promotion of low momen-
tum states to higher momentum and the reduction in the
step discontinuity at the Fermi surface [2—4]. Similarly
Fig. 1b shows that the 100% condensation into the zero
momentum ground state of a noninteracting Bose system
is reduced to roughly 8% in *He with the rest going into
an almost Gaussian distribution [5].

The proof of this assumption for systems at zero tem-
perature is an immediate consequence of the ground state
variational principle applied to the free particle Hamil-
tonian, Hy, which states that Ko = (¥o|Hp|¥o) is mini-
mized by ¥q, the true ground state wavefunction of Hy.
Using any other wavefunction, such as the ground state,
U, for an interacting system, H = Hy + U, leads to

K = (¥g|Ho|¥s) > Ko, (1)
demonstrating that the kinetic energy, K, of the inter-

acting system is never lower than the free particle kinetic
energy, K.
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FIG. 1: Top figure: Broadening of the ground state elec-
tron gas momentum distribution at rs = 5 (dashed line) and
rs = 10 (dot-dashed line) caused by interactions. 7, is the
radius, in units of the Bohr radius, of a sphere containing
one electron and in metallic elements at atmospheric pressure
ranges from roughly 2 to 6. The unit discontinuity of the
momentum distribution for the noninteracting system (solid
line) at the Fermi surface is reduced by 28% and 42% respec-
tively. Corresponding increases in the kinetic energy over the
noninteracting case are 30% and 60%. Bottom figure: For
“He at T = 0 and P = 0 roughly 92% of the zero momentum
condensate (black vertical bar along y axis) in the noninter-
acting Bose system is promoted to higher momentum states
(distribution given by dashed line) leading to a kinetic energy
increase of over 14 K per particle.

This argument fails however, when generalized to
nonzero temperature, 7', where the system occupies a
thermal distribution of energy eigenstates. From the
Gibbs variational principle, the free energy functional,

Flp] = Tr[Hop] + kBT Tr[plnp] , (2)

takes its minimum value F[pg] = K¢ — T'Sp for the equi-
librium density operator po = e~PHo /Tr[e=PHo] where



B =1/kpT and kg is Boltzmann’s constant. Any other
normalized density operator, such as that for the in-
teracting system, p= e PH /Tr[e~#H], gives a higher
value [6],

The ground state inequality, Eq. 1, now generalizes to,
K> Ko+T(S~So) - (4)

Since interactions often increase order, the entropy S
of the interacting system can be less than that of the non-
interacting, So, and S — Sy may be negative. This allows
Eq. 4 to be satisfied while the ground state inequality,
K > Ky, is not. Jensen’s inequality for convex func-
tions assures that interactions will decrease the entropy
for a classical system [7] but for quantum systems, this
depends on details of the interaction as well as density
and temperature [8]. In general, at nonzero temperature
nothing forbids interactions from lowering the kinetic en-
ergy.

This kinetic energy lowering would only be observed
in an intermediate range of temperatures since in the
high temperature, classical limit, interactions only effect
equilibration rates, not the final Maxwellian momentum
distribution.

WEAK COUPLING LIMIT

Not only is this lowering theoretically possible, it can
be shown to occur for a variety of weakly interacting
physical systems using lowest order thermodynamic per-
turbation theory. The change in the Helmholtz free en-
ergy, F', to first order in the interaction potential is

F=F+(U),, (5)

where (U),, is the potential averaged over the free particle
configurations. Since the total energy is given by, £ =
O(BF) /0B, the first order change in the kinetic energy
from Eq. 5 is

K1=ﬂ%[/2)0 . (6)

For a single component system of N particles with pair
interaction, V (r), the first order energy change reads,

W= NG [ o)V dr® ™)

where n is number density. The first order kinetic energy
change

Ky = —TNg / 652);1") V(r)dr® (8)
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FIG. 2: Behavior of free fermion (top figure) and free boson
(lower figure) radial distribution functions for indicated tem-
peratures measured in terms of the Fermi temperature Tr or
condensation temperature T, respectively.

depends on the temperature dependence of the free par-
ticle radial distribution function, go(r).

As shown in Fig. 2, for both fermions and bosons
0go(r)/0T can be positive at all r leading to a kinetic en-
ergy decrease for repulsive interactions although for quite
different reasons in the two cases. For fermions the in-
crease of go(r) with temperature is due to the filling in of
the “Fermi hole”, the region near the origin where due to
antisymmetry like spin particles are excluded. The size of
this region is roughly the de Broglie thermal wavelength
which is proportional to 1/ VT.

For noninteracting bosons at 7" = 0, all particles are
in the zero momentum condensate and go(r) = 1. As
the temperature increases particles are promoted from
the condensate and go(r) increases at all r for T/T, <
(2/5)%/3, where T.. is the Bose condensation temperature,
and thereafter at small r, reaching go(0) = 2 at T =
T. [9, 10]. Since TOgo(r)/0T vanishes at T' = 0, the
ground state inequality, Eq. 1, is not violated.

The mechanism for the narrowing of the electron gas
momentum distribution can be seen from the first order
shift in the free electron energy levels [11],

Acl) = 55 ; |k"i(§?|2 : (9)

The decrease of ng(k) with k leads to a larger lowering
of the energy levels at smaller k and thus to a population
redistribution and momentum distribution narrowing as
demonstrated in Fig. 3.
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FIG. 3: Example of momentum distribution narrowing in the
fully polarized electron gas at 7s = 4 and T = Trermi from
simulations with 57 particles.

SIMULATION RESULTS

For the electron gas, this weak coupling expansion ap-
plies only at very high densities, r; S 0.5, and is of little
use for realistic condensed matter densities. It is neces-
sary to use more powerful quantum many body simula-
tion methods. Two such methods, path integral Monte
Carlo (PIMC) [12, 13] and a variational trial density ma-
trix method (VDM) [14], have been used here to search
for narrowing of the momentum distribution in a variety
of fermion systems.

Liquid ®He is a strongly coupled system. Due to its
steeply repulsive short ranged interactions the weak cou-
pling arguments of the preceding paragraphs do not ap-
ply. Restricted PIMC calculations using free particle
nodes for 3He at number density n = 0.01636A~° and
temperatures from 1 to 40 K show the kinetic energy to
be more than 5 K above the noninteracting value. Nar-
rowing of the momentum distribution is not found for
this system.

For the electron gas model both restricted PIMC and
VDM calculations find momentum distribution narrow-
ing. The effect is small, with the relative decrease of the
kinetic energy from its ideal value less than a few per-
cent [15, 16], but well within the accuracy of the two
methods. The computation of momentum distribution
for fermions with PIMC (see Fig. 3) required extending
the restricted path integral technique to simulations with
open paths [17, 18].

Fig. 4 shows the difference in kinetic energy of the
homogeneous electron gas for different densities and
temperatures indicated by the degeneracy parameter
T /Trermi- For densities corresponding to s < 4, alow-
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FIG. 4: Relative excess kinetic energy vs temperature for the
unpolarized electron gas at indicated rs values as calculated
from PIMC simulations with 66 particles in the periodic cell.

ering of the kinetic energy with respect to the noninter-
acting value is found. The magnitude of the lowering
increases with density (smaller r,). The statistical un-
certainty of these results was estimated at r; = 1 and
T = Trermi by a study of finite size effects (using 14,
38, 66, and 114 particles in the periodic simulation cell)
and path discretization errors (using 16, 32, and 64 time
steps) which gave (K — Kg)/Ko = 0.023 &+ 0.002. The
region of the effect, as predicted by PIMC simulations,
is shown in the high temperature and density phase dia-
gram in Fig. 5.

Simulations of dense hydrogen plasma [19] have also
indicated kinetic energy lowering, which we confirmed
and extended. We found a maximal lowering of (K —
Ky)/Ky = 0.007 £0.001 for rs = 0.5 and T = Trermi-
The magnitude is reduced compared to the electron gas
because Coulomb interactions of electrons and protons
counteract the entropic lowering. This also results in
a reduction of the parameter region in the temperature
and density plane for which the effect can be observed.
However, in the limit of high density, the boundaries for
the electron gas model and for hydrogen converge be-
cause interactions become weaker in the high density
limit. Fig. 5 shows that the lowering region of hydro-
gen includes conditions near the core of the sun or other
low mass stars [21] as well as on the compression path
of inertial confinement fusion [20], indicating that hydro-
gen is a potential candidate for experimental verification
of this effect. For both the electron gas and hydrogen
in the region where this effect occurs the pressure virial,
3PV =2(K) + (U}, is dominated by changes in the po-
tential rather than kinetic energy therefore experimental
confirmation would probably require direct measurement
of the momentum distribution rather than equation of
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FIG. 5: Proposed region for momentum narrowing (K < Kp)
in the unpolarized electron gas (area above the solid line)
and in hydrogen plasma (area above the dot dashed line) as
derived from PIMC simulations. The dashed line indicates
the compression path of inertial confinement fusion [20]. The
conditions near the core of the sun and a low mass star (0.3
solar masses) are also indicated [21].

state.

CONCLUSIONS

Analytical and numerical arguments show that interac-
tions can reduce the kinetic energy of a quantum system
below the corresponding noninteracting value. The asso-
ciated narrowing in the momentum distribution can po-
tentially be verified experimentally. Prime examples are
the Bose condensates in magnetic traps, in which the mo-
mentum distribution can be inferred by measuring the ex-
pansion rates after the magnetic field has been switched
off. Sufficiently accurate measurements of the momen-
tum distribution could be used to provide information
about the nature of the interactions of the trapped atoms.

Lowering of the kinetic energy was demonstrated in the
homogeneous electron gas model, one of the fundamental
models in condensed matter physics and a well studied
example of a one-component plasma. Corrections to the
noninteracting kinetic energy are always positive at zero
temperature and vanish in the high temperature limit,
which makes it counterintuitive to expect lowering at in-
termediate temperature. Research on the one-component
plasma has focused more on the internal energy, pressure
and correlation energy. However, the kinetic energy is
relevant of our understanding of quantum systems and
can be determined experimentally by measuring the mo-
mentum distribution.

The effect, previously indicated but left uninterpreted
in dense hydrogen [19], is reconfirmed here. The argu-
ments presented above suggest that the kinetic energy

reduction should be present in weakly coupled systems
with repulsive pair interactions. Simulation evidence for
this effect was presented here only for Coulombic sys-
tems. More work is necessary to understand how these
arguments apply to other systems and where the entropic
reordering in the thermal population of states leading to
a lower kinetic energy can best be observed experimen-
tally.
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