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Abstract— The search for low autocorrelated binary se-
quences is a classical example of a discrete frustrated op-
timization problem. We demonstrate the efficiency of a
class of evolutionary algorithms to tackle the problem. A
suitable mutation operator using a preselection scheme is
constructed and the optimal parameters of the strategy are
determined.
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I. INTRODUCTION

HE interest in binary sequences with low autocorre-

lation emerged initially from several communication
engineering problems in radar applications [1], [2], [3]. Sev-
eral authors have provided empirical evidence of the com-
plexity of the optimization task, essentially based on the
low quality of the results obtained with diverse optimiza-
tion strategies [2], [4], [5], [7]. Furthermore, ultrametricity
analysis and a comparison of these results with the few an-
alytical results available confirmed that the search for the
least autocorrelated binary sequence (LABS) resembles the
search for a needle in the haystack. LABS also provides
a nice example of a frustrated problem. For this class of
problems, for example the TSP or spin-glass systems, sev-
eral contradictory requirements need to be optimized. In
fact the search for LABS is equivalent to the search for the
ground state of an Ising-spin system with long-range 4-spin
interaction [2]. For low temperatures the escape time from
local extrema grows dramatically and the system shows a
spin-glass behavior, as explained in [8]. Although the quick
improvement of modern computers has lately allowed an
exhaustive search for relatively high dimensions [7], [9], re-
cent efforts have concentrated on still higher values thus
enlarging the search space to more than 103°, for which an
exhaustive search is impractical.

II. LABS

The optimization problem can be introduced as follows:
let us consider a binary sequence of length L

§; = +1. (1)

s = {s1,82,.--,8L},
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The correlation of symbols with distance k is measured by
the autocorrelation function

L—k
Rk = Z Si Si+k - (2)
i=1
The quadratic sum of all autocorrelation functions
L—1
E=Y R; (3)
k=1

is called energy because of the relation to an Ising-spin
system with long-range 4-spin interaction (cf. [2]). The
aim of finding sequences with low autocorrelation can then
be formulated in two different ways: one either searches for
low values of maz{|Rg|} or maximizes the so called merit
factor ,

L

5% - (4)
The merit factor, which will be used as the fitness function
throughout this work, was introduced by Golay [4] as a
qualitative measure for a sequence on the grounds that it
lends itself to better analytical treatment. It is also closely
related to the signal-to-noise ratio used in signal processing
applications [1].

All sequences can be divided into equivalence classes, if
one considers that the operations of inversion (s; := —s;)
and reversal (s; := s;_;) leave the Ry, and therefore F,
unchanged. For odd L, only the particular subclass of the
skew-symmetric sequences is usually considered. Fulfilling

()

for ¢ = 1,...,n — 1, these sequences have the property
that R, = 0 for all odd k. Since in the skew-symmetric
case the right half of the sequence is determined by the
left half, the problem of finding the best skew-symmetric
sequence for length L is only as tedious as finding the gen-
eral LABS for (L + 1)/2. For a given L, the energies E of
any pair of sequences differ by multiples of 4. For two skew-
symmetric sequences, the energy difference is a multiple of
8. This leads to a further discretization of the merit factor
F'. Though most authors have concentrated on odd lengths
using the skew-symmetric sequences as a sieve, there is
no guarantee that the best sequences for odd L are skew-
symmetric. Known exceptions are, to date, L = 19, 23,
25, 31, 33, 35, and 37 (cf. [7]). The advantage of restrict-
ing the search to skew-symmetric sequences can be seen
by comparing the density of states for skew-symmetric and
normal sequences (Figure 1). For large fitness, the number

F =

Snti = (1) sp—s, n=(L+1)/2
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of local maxima is decreasing exponentially, and numerical
tests discussed in section IV show that maxima are well
separated, making the search landscape similar to a golf
course with its isolated holes as optima.
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Fig. 1. Comparison of the density of states for the skew-symmetric

(dashed line) and the complete search space (solid line), sampled
with 107 randomly generated sequences for L = 101.

Because each autocorrelation function R contributes
quadratically to the energy E (3), a single large Ry can
reduce the fitness of a sequence drastically. The Ry are
not independent and therefore each change in the sequence
leading to an improvement of a certain R will modify the
other Ry as well. This is the feature of what is normally
called a frustrated problem, characterized by a rough land-
scape where local maxima are many, steep, and narrow.

The fitness fluctuations in a Hamming-one neighborhood
around a local maximum are shown in the right graph of
Figure 2. The left graph shows the fitness of sequences
obtained by inversion of up to all bits, starting from the
locally optimal one. The fitness decreases rapidly with the
Hamming distance from the maximum, hinting at the nar-
rowness of the local optimum.

The LABS problem gained international scientific recog-
nition thanks to the works of Golay [1], [4], [10], [11], where
the assumption that the Ry are normally distributed (the
so called ergodicity hypothesis) brought about an analytical
approximation for the partition sum, thus leading to an es-
timate for the probability distribution of F' and the largest
possible F' for given L. The probability distribution decays
exponentially for large F' hinting again at the difficulty of
the problem [12]. This approach was later improved in
[2], where the analytical predictions and the results from
simulated annealing were compared, and doubts were cast
about the possibility of reaching fitness values substantially
higher than 6 for L > 100 with any stochastic iterative im-
provement method. In [9], the statistical analysis of Golay
was applied to the skew-symmetric subspace in order to
compare the theoretical estimates with the data from an
exhaustive search for L = 55. The authors concluded that
the ergodicity hypothesis provides a reasonable estimate
for high F.
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Fig. 2. Structure of the landscape. Fitness of sequences generated by
inversion of a given locally maximal sequence up to position ¢ (left
graph) for L = 100. Fitness of all sequences in the neighborhood
of the same sequence, generated by changing only bit ¢ (right
graph).

A serious attempt to apply evolutionary optimization
techniques to LABS was made in [6] and in [7] in particular,
where an advanced kind of parallel genetic algorithm was
employed which made heavy use of heuristics as well as es-
pecially suited mutation operators and local hill-climbing.
Recently the LABS problem was also used as a test bench
for a new kind of optimization strategy (democratic opti-
mization [5]) and a new trial with simulated annealing was
made for L = 100 in [13].

ITI. STRATEGY
A. FEwvolution Strategies

Evolutionary algorithms (EA) have been successfully ap-
plied to the optimization of various frustrated, discrete
problems [14], [15], [16]. Their independence from the ana-
lytical features of the fitness function makes them suitable
for black box problems, in which no knowledge is available
regarding the fitness production mechanism.

Among the diversity of EAs, we will concentrate on the
so-called evolution strategies (ES) (u ,A) and (u + A) [15].
Starting from a parent population of p individuals, A chil-
dren are created by mutation. Each child is generated by
mutating one parent that is chosen at random out of the
parent population. After that a selection process follows.
In case of the comma strategy, the p children with high-
est fitness form the next generation. In the case of the
plus strategy, the u best individuals out of the set of the
1 parents and the A children form the next generation. In
the case of the plus strategy, the best individual is always
taken into the next generation and therefore the fitness of
the best individual is non-decreasing.

Given the large number of local maxima, comma strate-
gies seem to be more appropriate to the LABS problem
[17]. There is no general rule for setting the optimal values
for pr and A. For the LABS problem, we will give estimates
in section ITI-C.
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Because of the long range correlations and the quadratic
structure of the fitness function, we decided not to use
any recombination operator to generate an offspring out
of parts of fit sequences. Only a complex and computa-
tionally expensive procedure might prevent changes in long
correlations to outweigh gains with short ones.

The absence of any recombination strategy makes our
ES resemble another class of EA, evolutionary program-
ming (EP), initially conceived to optimize machine intelli-
gence [21] and later accepted as an all-purpose optimiza-
tion method [22], [23]. In EP applications for continuous
search spaces, individuals are typically mutated by adding
normally distributed random numbers, with a mechanism
making mutations more likely where they are less disrup-
tive to the parenting genotype. It differs from ES in that
all individuals generate an offspring, and in the usage of
a probabilistic, tournament-like selection scheme which ex-
erts a smaller degree of selective pressure. In this work, we
will concentrate on ES.

B. Mutation Operator

The (u, A) strategies do not require any specific genetic
representation nor any particular mutation operator (MO).
By MO we mean any procedure which modifies a parent in
order to create an offspring. MOs can be more or less
disruptive and more or less independent from the nature
of the task being optimized. For several problems though
(cf. [17]) it is desirable to exploit all the knowledge available
for contriving a MO, which is not as blind as mutation in
nature but goes instead in a specific direction.

The simplest MO for LABS generates the new sequence
by flipping one bit, chosen at random, in the old sequence.
We call this the 1-flip MO. This operator can be improved
in several ways. We found it advantageous to flip more than
one bit at once and to make a preselection of the created
individuals. As the energy of a sequence is determined by
the square of the Ry, it is especially advantageous to elimi-
nate large Ry. Therefore we do not consider the full fitness
function F' but we demand that the elements of a certain
subset of m especially large Ry be diminished. We select
each of these Ry by taking the greatest out of ¢t randomly
chosen Ry. After the set of R to be reduced has been de-
termined, we flip n > 1 bits at random and check whether
all Ry in the subset have been reduced. In this case, we
accept this sequence. Otherwise, we reject it and mutate
the original sequence again. If s,,,, trials are unsuccessful
we accept such a sequence as well. The strategy has the
advantage that a certain directionality is imposed on the
mutation process as compared to the complete randomness
of the 1-flip operator.

We obtained the best results by settingn =2,m =2,¢t =
L/4, and $pq, = L. We refer to this setting as the prese-
lective mutation operator (PMO).

The preselection scheme tackles the frustration by fulfill-
ing some requirements first without concerning others that
are only given attention in the final selection step. In this
sense it shares some features of the democratic optimiza-
tion method recently introduced in [5].

C. Measures for Population Diversity

The efficiency of an ES depends on the MO but also on
the choice of y and A. A high value for A can become com-
putationally expensive, whereas setting it too low would
not guarantee an effective scanning of the neighborhood.
Using comma, strategies in combination with the PMO, we
studied the number of different sequences Nz with a fitness
above a certain threshold F'. To do a reasonable compari-
son for different A at given u, we determined this number
using a fixed limit of fitness evaluations (number of gener-
ations times A).
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Fig. 3. The number of different sequences with a fitness above a cer-
tain threshold. as function of A\ for 4 = 10 and skew-symmetric
sequences of L = 101. Every data point was obtained by averag-
ing over 200 separate runs with 2-108 fitness evaluations (number
of generations times A) each.

The results shown in Figure 3 as a function of A exhibit
a clear maximum at A & 150. By choosing A smaller and
larger than this value, two rather different dynamics are
obtained, as can be seen from Figure 4 and 5, where the
fitness of the best individual in the population is plotted
against the generation number. For small A, one observes
a stochastic pattern (Figure 4). For large A (Figure 5),
one finds a highly correlated pattern showing the repeated
occurrence of certain fitness levels.

The repeated creation of the same locally optimal se-
quences is common to several EAs in discrete spaces [17],
when reproduction chances are increased. To verify that
this can explain the quantized dynamic shown in Figure 5
and to give a quantitative description of this phenomenon,
we consider the probability p, that the fittest individual
in the population already occurred as such in any of the
previous g generations. The upper plot in Figure 6 shows
measurements of p, for different values of A and g.

The reoccurrence probability is significantly increased for
high A. Note by studying the slope of the curves that the
biggest contributions are generated at ¢ = 1 and g = 2.
Therefore, for A large enough, the chances that the fittest
individual in the actual population will be found again in
at most two generations are considerably high, thus ex-
plaining the quantized fitness of Figure 5. The slope of
the curves decreases with ¢ indicating that longer cycles of
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Fig. 4. Evolution of the fitness of the best individual in each genera-
tion for the preselective mutation operator in the case of L = 101,
u = 10, and A = 100. The dynamic shows no quantization. No-
tice that comma strategies do not guarantee any monotonicity.
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Fig. 5. Evolution of the fitness of the best individual in each genera-
tion for the preselective mutation operator in the case of L = 101,
u = 10, and A = 250. For these values of the parameters the fit-
ness is clearly quantized.

fittest sequences become more and more unlikely.

In the second graph of Figure 6, we plotted pogp as a
function of A in order to use it as an estimate for the total
probability for the reoccurrence of the fittest individual. If
A 2 150 the reoccurrence probability increases significantly
and the above mentioned effect becomes dominant causing
a decrease in efficiency.

Furthermore, additional investigations of the population
diversity showed that the number of different sequences
within the same generation Np decreases only slowly, start-
ing almost at the upper limit of Np = p = 10 for small
A and then gradually decreasing to 8.0 at A = 400 even
if measured over a relatively large number of generations,
105. Therefore, we do not consider the modest increase in
number of duplicate individuals as the main cause for the
performance decrease shown in Figure 3.

We use the peak in the same figure to define the optimal
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Fig. 6. The upper graph shows the probability pg(A) that the fittest
individual had already occurred as such in the g previous gener-
ations. All values were averaged over the last 5000 generations
of 100 separate simulations, using the PMO for L = 101 and
# = 10. In the middle graph, paoo()) is plotted as function of
A in order to estimate the total reoccurrence probability. The
significant increase shows that raising A does not necessarily lead
to a more successful strategy, whereas the average number of dif-
ferent sequences within the population Np shown in the lower
graph changes only slightly with increasing A.

value of A\. This A°P! can be determined for other values of u
and for different MOs with the same technique, as shown in
Figure 7 for the PMO and for operators flipping randomly
1 and 2 bits. The slope of the graphs is related to the
average size of the neighborhood that can be reached in one
mutation, and for all three MOs, one finds a nearly linear
dependence. The biggest neighborhood is generated by the
2-flip operator, whereas in case of one flip, the much smaller
neighborhood corresponds to a reduced slope. The PMO
also fits in this scheme since the preselection procedure
leads to a reduction of the effective neighborhood but still
allows comparatively large jumps in Hamming space.

IV. RESULTS

A comparison of Ng between the PMO and the other
two MOs taken into consideration, shows that the PMO
performs remarkably better. Setting p = 10 and A = \°P!
for the 1-bit flip, 2-bit flip, and the PMO and considering
2-10° fitness evaluations, one obtains N5 o = 38, 6, and
153 respectively. The greater number of fit sequences found
by using the PMO, confirms the advantage of employing a
preselection scheme.

The results obtained with it (u = 10 and A =~ L) up to
2 - 108 generations are shown in Table I. Due to the non-
deterministic character of the ES, the size of the search
space and roughness of the fitness function, the results



MILITZER, ZAMPARELLI, BEULE

700 | » l
/
| / o——o PMO i
600 J == 1-bit flip MO
s & -— ¢ 2-bit flip MO
500 | / ]
»
= 400 | /
g , B
< ¢ el
300 -/ - ]
/ -
.
200 |# T |
_m” i
100 9~ l
.'/
0 : ‘ ‘ ‘
0 10 20 30 40 50
vl

Fig. 7. \°Pt as a function of u for the preselective mutation operator
(PMO), the 1-bit random flip operator and 2-bit random flip
operator applied skew-symmetric sequences of length L = 101.

TABLE I
HIGHEST MERIT FACTORS FOR SKEW-SYMMETRIC SEQUENCES AS
PUBLISHED IN [18], [19], [20], [9], [7], AND BY OUR METHOD.

Ll [28 | 19] | [20] | [9] | [7] | this work
81 || 7.32 | 8.20 8.04 | 8.20 8.20
101 || 6.06 | 8.36 | 6.91 | 8.36 | 8.36 8.82
103 || 5.90 | 9.56 | 7.76 9.56 9.56
105 || 6.07 | 8.25 | 7.61 8.25 8.78
107 || 6.53 | 8.46 8.46 8.46
109 || 6.15 | 8.97 8.97 8.97
111 || 6.02 | 8.97 8.97 8.97
113 || 6.33 | 8.49 8.49 8.49
115 || 6.40 8.60 8.88
117 || 6.42 8.12 8.71
119 || 6.01 7.67 8.02
121 || 6.61 6.75 | 8.67 8.67
141 || 6.01 6.48 | 7.45 8.83
161 || 6.02 6.02 | 6.89 8.39
181 || 5.70 6.02 | 6.77 7.75
201 5.92 | 6.29 7.46

strongly depend on the initial conditions, making it un-
likely to reobtain the best values in every run. For all val-
ues of L fitness values to date were improved or reproduced
by our strategy. In Figure 8 the results are compared with
an approximation for largest possible fitness [10] of skew-
symmetric and general sequences.

The values found for odd L from 101 to 121 are close
to these predictions. For L over 121 momentous improve-
ments were achieved. According to the approximation for
the distribution of fitness values given in [2], for L = 201
the sequence with F = 7.46 is 2 - 10° times rarer than the
one with F = 6.29 found in [7]. For L = 100, which is
as tedious as L = 201 when exploiting skew-symmetry, we
found the sequence shown in Table IT with F' = 7.84, which
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Fig. 8. Fitness of the best sequences generated by the preselective
mutation operator and results for small L of the exhaustive search
compared with the estimated optima given in [10].

is a significant improvement compared to F' = 6.39 in [13].
According to the approximation for the distribution of fit-
ness values there are only 4000 sequences with fitness equal
or higher within the 2190 ~ 1.3-10%° possible ones. A purely
stochastic sampling procedure with the same amount of fit-
ness evaluations (2 - 10'°) would find fewer than 10716 of
such sequences.

Flipping two bits at a time is a compromise between
the two aims of generating fit offspring and sampling the
configuration space efficiently. When flipping too many
bits at once only mediocre offspring are generated and the
method degenerates to a random search. The probability
of escaping from the many local maxima characterizing this
search space increases dramatically by flipping several bits
at a time. The impossibility of finding better sequences
when exhaustively searching the neighborhood of higher-
than-average sequences for up to five bits (F' > 7, L = 100)
also suggests the same conclusion.

TABLE II
BEST SEQUENCE GENERATED FOR L = 100 WITH A FITNESS OF 7.84.

e -+ -+ ++—+++—F++++++ -+ F
Bt —t—F+———F—F+—-F-———F—-F++- %
ettt -+ —F——F————FFF+——+—++ T
i e L A e s e

V. SUMMARY

We have shown how ES can be successfully applied to
the LABS problem. Checking the diversity between suc-
cessive populations allowed the empirical determination of
the most suitable values for the optimization parameters
of the strategy. The particular form of the fitness was
exploited to construct a mutation method more likely to
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bridge the large distances between different local maxima.
The selection procedure used in the ES is based on a com-
putationally cheap preselection scheme that helps handle
the frustration of the problem.
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