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Abstract

First the range of validity of a quasi-classical approach is analyzed
and analytical formulae for the thermodynamical potentials are derived.
Then a simple quasi-classical model for the quantum molecular dynamics
of hydrogen-like plasmas is developed. The model is based on a quasi-
classical wave packet representation and leads to effective momentum-
dependent Hamiltonians. The quantum-mechanical effects corresponding
to the Pauli and the Heisenberg principle are modeled by constraints in
the Hamiltonian. Monte Carlo and Molecular Dynamics calculations are
carried out for electron-, electron-positron-, and for hydrogen plasmas con-
sidering ensembles of 64 - 250 particles. A comparison with the analytical

formulae shows reasonable agreement.



1 Introduction

The theory of hydrogen-like many particle systems belongs to the most difficult
and fascinating problems of quantum statistics [1, 2, 3]. This is in particular
connected with the appearance of a simple type of bound states. In dense
plasmas beside the bound states other quantum effects connected e.g. with
the Pauli exclusion and many particle collective effects appear [3, 4]. In the
last time hydrogen-like systems attract much interest [5]. Several limiting cases
were treated analytically [2, 3]. The quasi-classical approach led already in the
sixties to the correct bound state contributions in the second virial coefficients
[6]. Shortly after the complete quantum statistical expression for the second
virial coefficient and the pair distribution function was obtained [7, 8, 9].

The analytical calculations mentioned so far cover only the limit of small
densities. For this reason computer simulations of dense systems are of large
interest. In particular we mention the Monte Carlo calculations developed by
Ceperley and Alder [10] and several other workers [11, 12, 13, 14]. In the
last time quasi-classical simulations of many-particle systems have received a
great deal of interest because they are relatively simple and provide also in-
formations on the microscopic dynamics. In particular we mention the semi-
classical approach to the molecular dynamics of hydrogen-like systems devel-
oped by Klakow, Toepffer and Reinhard [15, 16]. In recent work we extended
this approach to ionization phenomena [17, 18, 19]. We included also degener-
acy effects by using momentum-dependent potentials [20, 21]. This approach
follows a method developed by a series of authors as e.g. Wilets, Kirschbaum,
Dorso and Randrup. Originally only the Pauli exclusion principle was simulated

by a momentum-dependent two-body interaction [22, 23]. Later the Heisen-



berg effects were incorporated by another momentum-dependent contribution
[24]. The hydrogen ground state was reproduced exactly, the ground states of
H~,He, Li, Ne and Ar were given better than 15%. Cohen applied this model
to atoms with higher Z-values and derived reasonable results for the ground
states of all atoms up to 7 = 38 [25]. In general, the quasi-classical approach
based on momentum-dependent potentials gives atomic energies being between
Thomas-Fermi and Hartree-Fock calculations. The conclusion from the papers
cited above is, that at least in some limitations quantum-mechanical effects and
in particular the Heisenberg and the Pauli principles may be incorporated into
a quasi-classical approach by using momentum-dependent potentials.

In this work we develop this approach but we do not consider extensions of the
quasi-classical formalism by introducing specific quantum variables which lead
to an extended phase space. This route is chosen in the so-called wave-packet
dynamics which introduces the size and the speed of the spreading of the wave
packet as additional variables [15, 16, 26]. As known this methods leads to sev-
eral difficulties in formulating a statistical mechanics which are connected with
unphysical excitations [15, 16, 19].

In our model the quasi-classical phase space has only 6 dimensions per particle.
We will study first electron-positron plasmas which we consider as a model of
greatest simplicity due to the mass-symmetry. These model systems show sev-
eral cancellation effects which are connected with the high symmetry [29]. Then

hydrogen plasmas with asymmetric masses are studied.



2 Analytical Theory in the Quasi-classical Ap-
proximation

We consider first the characteristic lengths and dimensionless parameters of the
plasma: The average distance of the protons (electrons) is the Wigner-Seitz
radius, d = [3/4mn]'/3. Here n = n, = n, is the density of protons (electrons)
in the plasma. The Debye length is rp = 1/k where k? = 87ne?. The Lan-
dau length is defined by | = €2/kT and the Bohr radius which characterizes

2. The quantum effects con-

the ground state orbit is defined as ap = h/me
nected with scattering states are described by the De Broglie wave-length of
free electron motion A = h/[2rmkT]'/? and the De Broglie wave length of rel-
ative electron motion A = h/[2ukT]'/? where p is the reduced electron mass.
By means of these characteristic lengths we define the dimensionless parameter

of the electron degeneracy nA® and the coupling parameter T' = [/d and the

interaction parameter
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where Fog = —pue*/2h is the ground state energy. The range of a quasi-classical
approach is in principle given by the condition £ > 1, i.e. the classical Landau
length I should be large in comparison to the De Broglie length A. Accord-
ingly quasi-classical behavior is expected at low temperatures, This situation is
quite opposite to that for van der Waals gases. Besides the condition that the
temperatures are sufficiently low we have to require that the densities are not
too large, i.e. the Bohr radius should be small in to the mean distance of the

charges ap < d. Altogether this leads to the two conditions of quasi-classicality

T < (—FEo)/kp,n < az’. (2)



Accordingly the quasi-classical region is a corner in the density-temperature

plane.

The first successful quasi-classical approach to quantum plasmas was based
on the method of Slater sums which are defined by the energy eigen values £,

and eigen functions ¥,

—E,
S(m, .. ',T’N) = constZeXp (k’ T> |\I’n (7’1, . ..,rN)l2 (3)
B

The quantum-statistical partition function and correspondingly also the free
energy may be expressed as space integrals over the Slater sum as in the classical
case [3]. The technique of Slater sums allows an easy access to the free energy
and the distribution functions especially in the region of low densities. The
Slater sums for Coulombic systems were studied first by Kelbg [30] and later
in detail by several authors [3]. Kelbg developed a perturbation theory for the
Slater sum of pairs of particles

S(r) =155

L F(5) +0E) (4)
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Here the + corresponds to charges with opposite sign and — to charges with
equal sign. The thermal wavelength is defined by A = hA/v/mkT. The Kelbg

function F(z) reflects Heisenberg’s quantum effects and is defined by

F(z) =1—exp (1,2) + V7 (z) (1 —erf (2)) (5)

The expression (e2/r) - F(r/A) may be interpreted as an effective quantum-
statistical potential which replaces the classical Coulomb potential. Kelbg’s
effective potential applies to the region of high temperatures. The quasi-classical
approach to the Slater sums developed later in [6] was based on a quantum-

mechanical treatment of the lower two-particle bound states and a classical



treatment of the higher bound states and the free states [6]. The result for the

low-density free energy reads

3
F=Fd-kTV. (% - T(kag) — n? . 8r3/2)3 -o(T) + O(n?- hs) + O(n5/2)>

™
(6)
Here o is the so-called BPL-partition function, where BPL stands for the names

of the pioneers in that field Brillouin, Planck and Larkin:
—Fq Eq
o(T) = Z (exp <W> -1+ m) (7)
here s 1s the main quantum number. Further
r(z) =1 — (3/4)x + (3/5)z” — ... (8)

is the well-known Debye-Hiickel function representing approximately the ring
contributions and a, = /7TA/4 [29]. In the quasi-classical limit the term
O(n? - #®) does not appear what means, the that in the order n® the ring-
contribution and the BPL-term are the only corrections to the limiting law [6].
Nowadays several terms completing the BPL-contribution are exactly known
[3, 31]. Since the BPL-term contains h in the exponential, the quasi-classical
limit should be carried out with some caution. In particular we mention that
for low temperatures the exponent yields extremely large values what leads to
problems with the convergence of density expansions. A more soft behavior
shows the fugacity expansion, which is just an alternative way to represent the
thermodynamic functions [1]. In the quasi-classical limit we obtain (up to the

quadratic order) for the pressure the implicit equation
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Here z is the fugacity and

K? = 8rze? (11)

This equation of state shows the correct limits at high temperatures gp = 2n
and at low temperatures 8p = n. By comparison with the more complete
quantum-statistical PACH approach [32] one can show that indeed the quasi-
classical equation of state yields not only qualitatively correct results but even
in quantitative respect rather good results. In particular this is true for mass-
symmetrical systems i.e. for electron-positron plasmas. For later comparison
with MD-results we need also the mean Coulombic energy density which is ob-
tained from the pressure by derivation with respect to the interaction parameter
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Here uy is the contribution of the free states
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and wup 1s the contribution of the bound states
o0
up = 1673°2% > (BE,) [exp (—BF,) — 1] . (14)
s=1
We note that z = n* may be identified with the density of the free electrons
(positrons).
In this way the quasi-classical approach can be considered as a very reason-
able approximation to the complete theory. From the physical point of view the
basic content of the formulae given above is the semi-classical treatment of the

free charges which includes contributions up to 7% and a full quantum treatment



of the bound states. This basic concept will be transferred now to the quantum

molecular dynamics.

3 Wave Packet Dynamics for the Free Charges

In earlier work [21] a simple quasi-classical model of the quantum electron gas
based on a quasi-classical dynamics with an effective momentum-dependent
Hamiltonian was developed. Now this model will be extended to electron -
positron plasmas. Due to the mass- and charge - symmetry these plasmas have
much in common with the one-component electron plasma and furthermore
many quantum effects cancel due to the mass symmetry (except for the bound
state effects and the Pauli effects) [1, 3, 27, 29]. We consider the quasi-classical
dynamics of a system of free electrons, free positrons and excitons (bound states)
which are in thermodynamic equilibrium. The excitons (bound states) are not
explicitly taken into account in the dynamics, they form a kind of a heat bath.

The concentration of the neutral excitons is derived from the mass action law
ng =n? - Ac(T) - exp(—pex/kT) (15)

where fi.; is the excess part of the chemical potential of the (free) plasma (i.e.
the difference between the full chemical potential and the Boltzmann contribu-
tion). This is equivalent to minimizingthe free energy (neglecting charge-neutral
interactions) at constant temperature or the internal energy at constant entropy
[19].

Let us discuss now the quasi-classical dynamics of the free charges in our
model. The quantum-mechanical effects corresponding to the Pauli and the

Heisenberg principle are modeled by constraints in the Hamiltonian. For the



derivation of the effective interactions we use the concept of minimum uncer-
tainty wave packets [19, 21]. The wave function corresponding to a minimum

uncertainty wave packet (also denoted as a coherent state) are Gaussians:

_ (x—q)? ipr
¥,(z) = const exp <—W + ?> (16)

Here rg is the mean dispersion of the wave function, which is a free parameter
in this concept. The effective Hamiltonian is derived by averaging the original
Hamilton operator with respect to antisymmetrized combinations of the test

wave functions
1l pit) = [ dxii (0) 114 (2) (1)
From this expression one derives the following effective (quasi-classical)

Hamiltonian

N
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We have here two kinds of electron-electron and positron-positron interac-
tion: the so-called Pauli-potential Vp, and a Coulomb interaction modified by
a certain nonsingular function F'(z). The effective Hamiltonian H(q, p; h) is the
generator of a Hamilton type phase space dynamics. Restricting the calculation
described above to pair effects and averaging over the two spin configurations

we get in some approximation for the direct term the KTR-potential [15]
Play= SOV o o, (19)

and the Dorso - potential [22, 21]

h? A2
VP(P,T’):W'GXP{— 2 } (20)



This is an two-body interaction depending on the phase-space distance

2 2
R (21)
pi 13

with the minimum uncertainty condition
rgpo = h (22)

In the effective potentials ry is the width of the wave packets which we
consider as a free parameter. Similar as in the Kelbg-potential we take for rg
the thermal De Broglie wave-length ro = A\/v/2 = A/2 %/ [19, 21].

On the basis of these potentials several Monte Carlo and Molecular Dynamics
calculations were carried out for ensembles of 200 - 250 particles.

At first we carried out several runs for the OCP using the model described
in [21]. The Coulombic part of the interaction energy per charge (in units k7")

is given in Fig. 1 in comparison with the simple estimate

OCP _ _ﬂ (23)
201+ K ocpaq)

where KOCP = | /Arz¢23. Further a comparison with the Padé approximation

from [28] and with DeWitt’s formula fitting the classical MC-calculations [33]

9CP kT = —0.896434T + 0.8618561"'/4 — 0.5551 (24)

€elass

is made. The results of our simulations for non-degenerate OCP (6 = 5) and for
weakly degenerate OCP (6 = 1,0 = 2) are well described by the quasi-classical
estimate (23). For the case of degenerate OCP (f = 0.15) we get a better
description by means of the Padé approximation given in [28]. At higher T-
values (T' > 10) the simulation-results for all investigated degrees of degeneracy

f are very near to the classical curve. This means the quantum effects are
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rather small at T' > 10 and we are unable to discriminate between the different
theoretical estimates.
In a next step we calculated the energy density per particle for the two-

component system (TCP) using the scaling rule

KO°P o K = V2K©O°P (25)

We note that this simple scaling holds only for non-degenerate and weakly
degenerate plasmas [29]. The results are given in Fig.2 in comparison with
eqn.(13).

Further we carried out several simulations for the symmetrical TCP. The
results are also given is Fig.2. For a given T'-value the energies from the TCP-
simulations increase with increasing degeneracy 6. The estimate (13) shows the
same tendency, but there is no quantitative agreement. Further we see that the
scaling rule (25) leads also to the same qualitative behavior. A more detailed
comparison with Padé approximations, more accurate scaling rules and other

simulation data is in preparation.

4 Superposition Representations of the Wave

Packets

A disadvantage of the model described in the previous section is the approximate
treatment of the bound states. Therefore we developed another approach, which
is based on a superposition of free and bound electronic states. The free states
are represented by Gaussian wave functions and the bound states by the 1s

ground state wave function of the hydrogen atom. We restrict our consideration
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to hydrogen, where the positive charges (protons) can be treated classically.

Then the superposition ansatz reads [17]:

V() = Nov(x) + Nirton (2) (26)
vale) = )1 exp (T ) (27)

o) = (ra) 7 exp (-1 (28)

aq
Here R denotes the position of the (next) proton. The parameters Ng and
Ny may be considered as time-dependent variational parameters [17]. Here, we
prefer another view where both parameters can only have the discrete values 0
or 1, 1.e. an electron is either free or bound. In our molecular dynamics sim-
ulation, we consider stochastic transitions between both states, which leads to
a dynamic equilibrium of ionization and recombination. A detailed description
of this model can be found in [19]. We note that we have now two types of
electrons in our system: free electrons with Gaussian wave functions and bound
electrons with Is-wave functions located at a nucleus. The effective interaction
between free electrons remains unchanged. For the interaction between a free

electron G and a bound electron H, we find

Ver = i {erf <L) - %e_rz/rg [f <r_0 + L) -f <r_0 - L)]} (29)
r ro ag Lo} ag To

F(z) = ¢ erfe(z) <mﬂ - 1>

aq

Correspondingly, the interaction between two bound electrons reads

e? 5 3 1 r
Vian = —e2 |1 _—_2—_3], - 30
HH s [+8p yldis r= (30)
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5 Formation of Molecules

The superposition ansatz describes in principle the formation of molecules. Let
us consider a region of density and temperature where all electrons are in hy-
drogen states i.e. Ng = 0, Ng = 1. In this case, the dynamics of atoms is
purely classical and the effective interactions are of Heitler-London type. Fol-
lowing the spirit of the Heitler-London theory we have to calculate the effective
hydrogen-hydrogen interaction by taking into account the spins of the electrons
explicitly. Assuming a system of electrons with 50% spin up and 50% spin down
and considering symmetrized or antisymmetrized wave functions we obtain two

effective potentials for the hydrogen-hydrogen interaction

QR+ A
VHS — 1+S2 (31)
—A
Virs = Q_—52 (32)
where
Q = ie—2p[1+§ _§2_13] (33)
= 4mp g’ 1" %
e? [ 52 6 ., [11 103 49 11
_ - Y e _ =2 | 2= g Y2 - 3
A = aB{p [1+5(C+1np)] e [8+20p+]5p +15p (34)
M
+65— [MEi(—4p) — ‘ZSEi(—Qp)]} (35)
p
1
S = <1+P+§p2> e’ (36)
1 2
M = (1-ptgr)e (37)
T t
p= 2 c-osti2 | Fil) :/ St (38)
ap — 0o t
(39)

The singlet state with anti-parallel spins corresponds to a potential with a min-

imum at Ry = 1.6ap with a depth Vg, (Ry) = —3.2¢V. This is of course only a
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rough approximation of the real intra-atomic interactions. More realistic calcu-
lations give the figures 1.4ap and —4.4eV. The triplet state with anti-parallel
spins yields a repulsing potential.

We carried out several simulations with the potentials given above at differ-
ent densities and temperatures. In nearly all cases we observed the formation
of long chains of hydrogen atoms, alternatively with up and down spins. This
is due to the fact that we neglected three and four particle interactions, which
are essential for the description of atom-molecule and molecule-molecule inter-
actions. In our simple model, the repulsion between two atoms in triplet states
which are next to nearest in a chain are not strong enough to prevent the for-
mation of chains. In order to avoid this false effect, we have made an artificial
modification of the triplet-potential: We simply increased the strength of this
potential (by about a factor two). As shown in Fig. 4 this model leads to more
realistic description of the formation of molecules.

We have calculated also the pair correlation function of the atoms, which is
shown in Fig. 5. The sharp maximum of g(R) at a distance of about 1.6ap

reflects the atoms bound in molecular states.

6 Discussion

We started this work with a survey of the available results on the quantum
statistics of hydrogen-like plasmas in quasi-classical approximation. Then we
developed a simple quasi-classical model for the dynamics of hydrogen-like plas-
mas based on effective momentum-dependent Hamiltonians. The quantum-
mechanical effects corresponding to the Pauli and the Heisenberg principle were

by constraints in the Hamiltonian. By using the concept of minimum uncer-
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tainty wave packets, momentum-dependent effective potentials were derived.
The theory was applied first to electron-positron plasmas, which in some re-
spect are the simplest possible case due to several cancellation effect. Then the
theory was extended to a superposition model which represents the wave func-
tion as a sum of Gaussian and hydrogen 1s wave functions. Finally we studied
the formation of molecules.

We simulated many-particles system with periodic boundary conditions by
using Monte Carlo and Molecular Dynamics techniques. We considered ensem-
bles of 64 - 250 particles. The main advantage of molecular dynamics simulations
in comparison to Monte Carlo methods is that non-equilibrium properties are
accessible. Of course, we cannot expect that the present model, which contains
equilibrium parameters as the thermal De Broglie wave length will describe
non-equilibrium properties in a quantitative way. Further improvements of the
model might be unavoidable. Our strategy is a successive approximation were
the correct representation of the known equilibrium and near equilibrium prop-
erties serves as a testing ground for the theory.

Acknowledgment: The authors thank W. Stolzmann and A.A.Valuev for

helpful discussions.
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—e/KT

Figure 1: OCP - Interaction energy per particle in k7-units for § = 0.15(Q),
6 =1.0(0), 8 = 2.0(A), § =5.0(7). For comparison the curves from eqn. (23)
(a: § = 0.15, b: 8 = 5), the Padé approximants [28] (dashed line: § = 0.15,

dot-dashed line: # = 5) and the fit-formula (24) (¢) are shown.
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10° 10 10° 10 10
Figure 2: TCP - Interaction energy per particle in k7 -units for § = 1.0(0), 6 =
2.0(4A), 8§ = 5.0(v). In addition data from OCP simulations scaled according
to the scaling rule (25) for # = 1.6(x), § = 3.2(x), # = 7.0(e) is shown. The

solid lines represent eqn. (13) (a: § = 1, b: 6§ =5)
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Figure 3: Internal energy of the hydrogen plasma at the density n = 1.35 x

Simulation data (e) are compared with the ideal plasma (dashed

1022 em—3.

line) and the Padé approximant (solid line)
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Figure 4: Potential of the effective interaction between two hydrogen atoms in

the singulet-state (solid line) and the triplet state (dashed line).
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Figure 5: Formation of Hs molecules at temperature 7" = 300K and density
n = 6.75 x 10?2 ecm~3. Atoms not bound in a molecule are colored white, bound
atoms are colored dark-grey (spin up) and light-grey (spin down). Each molecule

consists of one spin-up atom and one spin-down atom.
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Figure 6: Pair correlation function of atoms. The peak at R = 1.6ag corre-

sponds to the formation of Hs molecules.

23



