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Equilibrium properties of hydrogen-helium mixtures under conditions similar to the interior of
giant gas planets are studied by means of first principle density functional molecular dynamics
simulations. We investigate the molecular and atomic fluid phase of hydrogen with and without the
presence of helium for densities between ρ = 0.19 g cm−3 and ρ = 0.66 g cm−3 and temperatures
from T = 500 K to T = 8000 K. Helium has a crucial influence on the ionic and electronic structure
of the liquid. Hydrogen molecule bonds are shortened as well as strengthened which leads to more
stable hydrogen molecules compared to pure hydrogen for the same thermodynamic conditions. The
ab initio treatment of the mixture enables us to investigate the validity of the widely used linear
mixing approximation. We find deviations of up to 8% in energy and volume from linear mixing at
constant pressure in the region of molecular dissociation.

I. INTRODUCTION

The discovery of the first extrasolar planet in 19951

marked the beginning of a new era in planetary science,
which is characterized by great improvements in observa-
tional techniques and a rapidly expanding set of known
extrasolar planets. Most of the about 200 known plan-
ets are giant gas planets in small orbits since the primary
tool for detection, radio velocity measurements, are most
sensitive for finding heavy planets that rapidly orbit their
parent star2,3. From radius measurements of transient
extrasolar planets, we know that most of the discovered
planets consist primarily of hydrogen and helium. There-
fore, there is a great need for accurate equation of state
(EOS) data for these elements under giant gas planet
conditions4. The knowledge of equilibrium properties
of mixtures of hydrogen and helium will help to clar-
ify questions concerning the inner structure, origin, and
evolution of such astrophysical objects. Open questions
are whether or not hydrogen and helium phase-separate
inside giant planets, if a plasma phase transition71 under
the influence of helium can be found, and if a solid rocky
core exists in Jupiter4,5.

The EOS of hydrogen has attracted considerable at-
tention and a large number of models have been intro-
duced to characterize hydrogen at high pressure and tem-
perature. Of great use in astrophysical calculations and
planet modeling are (free energy) models operating in
the chemical picture6–13. In these models, the hydrogen
fluid is assumed to be composed of well-defined chemical
species like atoms, molecules, and free charged particles.
Such methods operate in the thermodynamic limit and
are capable of describing large parameter regions of tem-
perature and density. Further advantages of the free en-
ergy models are the small computational effort required
to calculate the EOS and the explicit knowledge of all the
considered contributions to the EOS. Ionization and dis-
sociation degrees are computed by means of mass action

laws and are not subject to fluctuations due to techni-
cal issues as in simulations. Atoms and molecules are
treated as separate elementary species instead of being
considered as bound states of electrons and nuclei. This
implies certain approximations that limit the quality of
these approaches. At sufficiently high density, the defi-
nition of atoms and molecules becomes imprecise as the
lifetime of such objects decreases rapidly with density
and mean distances between nuclei and electrons become
comparable to bond lengths.

In this paper, special emphasis will be placed on testing
the accuracy of the linear mixing approximation, which is
often applied in free energy models to calculate the EOS
of mixtures of different chemical species such as hydrogen
and helium. A similar approach can be used to character-
ize mixtures of hydrogen atoms and molecules8,14. This
approximation allows the calculation of thermodynamic
variables of mixtures by a simple linear superposition of
properties of pure substances. Linear mixing is a useful
assumption to make if reliable experimental or theoret-
ical data are only available for pure substances, or for
cases where it has been shown that particles interact only
weakly.

To avoid the shortcomings of chemical models, first
principle calculations can be applied. Such methods work
in the physical picture and treat electrons and nuclei as
elementary particles interacting via the Coulomb poten-
tial. Quantum theory then describes the effects lead-
ing to the formation of atoms or molecules and their
statistics. For hydrogen, there have been great efforts
to study the equilibrium properties by means of density
functional theory (DFT)15–17, DFT-molecular dynamics
(DFT-MD)18–20, DFT - hypernetted chain equation com-
bination (DFT-HNC)21–23, path integral Monte Carlo
(PIMC)24,25, couple electron-ion Monte Carlo (QMC)26,
and Green’s function theory27,28.

Questions addressed include the problem of the hydro-
gen Hugoniot29–32 and helium Hugoniot33, the nature of
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the transition in hydrogen from a molecular to an atomic
state24,34,35, the melting line of hydrogen36, the differ-
ent molecular solid phases17,37–39, and the atomic solid
(metallic Wigner crystal) proposed to be found at very
high pressures40–42. Although DFT-MD is primarily an
electronic groundstate method, it can be readily applied
to describe dense solid and fluid hydrogen and helium
at conditions relevant to giant gas planets because the
electrons in such systems are either chemically bound or
highly degenerate.

To our knowledge, there are only a few first princi-
ple calculations dealing with the question of the helium
influence on the hydrogen EOS. Klepeis et al.

16 made
predictions concerning the hydrogen-helium phase sep-
aration but the DFT method applied in that paper is
not suitable to treat the high temperature liquid found
inside giant gas planets since only lattices could be dis-
cussed. The first DFT-MD calculations, performed by
Pfaffenzeller et al.

43, lead to more reasonable values for
hydrogen-helium demixing. However, their simulations
were performed using Car-Parinello MD (CP-MD). The
high temperature region (T ≥ 15000K) where partial ion-
ization occurs was considered by Militzer44.

Here we present new results concerning the hydrogen
and hydrogen-helium EOS for conditions inside giant gas
planets as derived from first principle DFT-MD. We use
Born Oppenheimer MD (BO-MD) in order to ensure well
converged electronic wavefunctions at every step. The
density and temperature values chosen cover the region
of molecular dissociation where we expect corrections to
the linear mixing approximation to be most significant.

We continue with Section II which contains details of
our computational method. Results for the hydrogen
EOS are presented in Section III A and compared to EOS
data from a variety of other approaches. Furthermore,
the ionic and electronic structures of the hydrogen fluid
and their dependence on temperature and density are in-
vestigated as well. The EOS and properties of hydrogen-
helium mixtures are studied in III B. The focus there is
on understanding how the presence of helium influences
the stability of hydrogen molecules, the electronic struc-
ture, as well as on determining excess mixing quantities.
Finally, the validity of the linear mixing approximation
is examined in III C and Section IV provides a summary
of our results and conclusions.

II. METHOD

We use first principle DFT-MD within the physical pic-
ture to describe hydrogen-helium mixtures under giant
gas planet conditions. This means that protons as well
as helium nuclei are treated classically. Nuclei and elec-
trons interact via a Coulomb potential. Since T ≪ TF ,
where TF is the Fermi-temperature, for all densities and
temperatures found inside a typical giant gas planet, we
employ ground state density functional theory to describe
the electrons in the Coulomb field of the ions. The ions

have sufficiently large mass to be treated as classical par-
ticles and their properties described well by means of
molecular dynamics simulations. We employ the Born-
Oppenheimer approximation to decouple the dynamics of
electrons and ions. The electrons thus respond instanta-
neously to the ionic motion and the electronic wave func-
tions are converged at every ionic time step. Compared
to Car-Parinello MD, this reliably keeps the electrons in
their ground state without the necessity to use an arti-
ficial electron thermostat for systems with a small band
gap.

The calculations presented in this article were carried
out with the CPMD package45. All MD results were
obtained within the NVT ensemble. A Nosè-Hoover
thermostat was applied to adjust the system tempera-
ture. The thermostat was tuned to the first vibration
mode of the hydrogen molecule (4400 cm−1). All DFT-
MD simulations were with 128 electrons in super cells
with periodic boundary conditions and convergence tests
were performed with larger cells. An ionic time step
of ∆t = 16 a.u. (1 a.u. = 0.0242 fs) was used through-
out, however we found that ∆t = 32 a.u. is already suf-
ficient for rs ≥ 1.86 in the hydrogen-helium mixtures.
(rs = 3/{(4πn)1/3aB}, rs is the Wigner-Seitz radius, n
the number density of electrons per unit volume). All
simulations were run for at least 2 ps and for the calcu-
lation of thermodynamic averages, such as pressure and
energy, an initial timespan of at least 0.1 ps was not con-
sidered to allow the system to equilibrate.

The DFT calculations were performed with plane
waves up to a cutoff energy of 35 − 50 Ha, the
Perdew-Burke-Ernzerhof GGA approximation46 for the
exchange-correlation energy, and Γ-point sampling of the
Brillouin zone. We used local Troullier-Martins norm
conserving pseudopotentials47,48. The pseudopotentials
were tested for transferability and for reproducing the
bond length and groundstate energy of single hydrogen
molecules as well as of helium dimers.

For each density, the simulations were started at low
temperature where the system is in a molecular phase and
the temperature was increased in steps of ∆T = 500 K in
order to avoid the premature destruction of molecules by
temperature oscillations introduced by the thermostat.

The electronic density of states (DOS) were calcu-
lated for snapshots from MD simulations with the Abinit
package49 and using a Fermi-Dirac smearing. The pre-
sented results for DOS and bandgaps are based on mul-
tiple snapshots for each parameter set.

Finite size effects were tested for by carrying out sim-
ulations with supercells containing up to 324 electrons
(plus the required neutralizing number of protons and
helium nuclei). For densities corresponding to 1.86 ≥
rs ≥ 1.6 and at T = 500 K we found the changes in pres-
sure and energy to be smaller than 2%. The convergence
of the Brillouin zone sampling was checked by optimiz-
ing the electronic density of several MD snapshots with
Γ-point, a 2×2×2, and a 4×4×4 Monkhorst-Pack grid of
k-points50 for a Ne = 128 system. The Brillouin zone ap-
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pears to be sufficiently small so that deviations between
results with 1, 8, and 64 k-points are below 1% (rs = 1.6,
T = 500 K).

We also examined the significance of electronic exci-
tations for the thermodynamic properties of the studied
fluids. Snapshots from MD trajectories were taken and
electronic states were populated according to a Fermi
distribution corresponding to the MD temperature. For
rs = 2.4 and T = 7000 K the pressure was found to in-
crease by 8%. Since the degeneracy parameter of the
electrons increases while moving along an isentrope to
the center of a giant gas planet, this can be considered
an upper limit for finite temperature electronic excitation
effects; the error for higher densities and lower tempera-
tures will be much smaller.

III. RESULTS

Here we present ab initio results for equilibrium prop-
erties of hydrogen and hydrogen-helium mixtures in
a density region between 0.19 g·cm−3 and 0.66 g·cm−3

(rs = 2.4 to rs = 1.6) and for temperatures from 500 K
to 8000 K. This parameter region includes part of the
transition region from the molecular to the atomic fluid
state of hydrogen and hydrogen-helium mixtures. It is,
therefore, interesting to study not only to get insight into
interior properties of giant gas planets but also to ex-
amine molecular dissociation, the molecular-atomic and
the insulator-metal transitions in hydrogen. Addition-
ally, one can consider the influence of helium on these
transitions and properties of mixing.

A. Pure Hydrogen

Figure 1 provides a summary of our hydrogen EOS
calculations using DFT-MD. Four different pressure iso-
chores are shown. At low density (rs = 2.4), the pressure
increases monotonically with temperature as the char-
acter of the fluid changes smoothly from molecular to
atomic. At this density, the transition is slow enough
with temperature so that the drop in the pressure when
molecules break (the interactions become less repulsive)
is compensated by the increase of the kinetic contribution
to the pressure.

At higher density (rs < 2), the dissociation of
molecules takes place more rapidly with increasing tem-
perature and leads to a region of ∂P/∂T |V < 0. At
sufficiently high density, this effect dominates over the
pressure increase that results from the presence of two
atoms instead of one molecule. Furthermore, the condi-
tion ∂P/∂T |V < 0 implies a negative thermal expansivity
∂V/∂T |P < 0, while the fluid maintains hydrostatic sta-
bility given by ∂P/∂V |T > 0.

By exhibiting a region with ∂P/∂T |V < 0, fluid hydro-
gen shares some properties with typical solids, where a
new crystal structure with more efficient packing appears
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FIG. 1: Pressure-temperature relation for pure hydrogen
along various isochores in DFT-MD (this work) and accord-
ing to Saumon and Chabrier (SC)7,8. The isochore of SC for
rs = 1.6 lies out of the range of the P axis. Errors for the
DFT-MD simulations are of the order of the symbols.
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FIG. 2: Pair correlation functions g(r) for pure hydrogen
at different temperatures (color coded) and different den-
sities: solid, dash-dotted, and dashed lines, respectively:
rs = 1.6 (0.66 g · cm−3), rs = 1.86 (0.42 g · cm−3), rs =
2.4 (0.20 g · cm−3).

and the pressure is lowered at fixed volume. In solid hy-
drogen different transition pressures to an atomic solid
have been predicted, above 300 GPa51,52 and rs =∼ 1.3.
This is consistent with the observed shift of the region
of ∂P/∂T |V < 0 to lower temperatures, as the density
is increased. It indicates a density effect on dissocia-
tion as less and less thermal energy is needed to break
up the molecular bonds. At even higher densities than
shown here, the bond length is equal or less than the
mean particle distance. In this regime the interaction of
molecules and atoms becomes too strong and pressure
dissociation/ionization occurs.

Figure 2 shows the dependence of pair correlation func-
tions (pure hydrogen at rs = 2.4) on the temperature.
The first peak at r ≈ 1.40 a.u. indicates the existence
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of hydrogen molecules With increasing temperature, the
height of the first peak is reduced as molecules dissoci-
ate. An analogue behavior can be observed by plotting
the changes in g(r) with density. A strong decrease of
the first peak with increasing density and thus a signif-
icant lower fraction of molecules at higher densities is
revealed. In addition to the less pronounced first maxi-
mum, an overall weakening of the short range order can
be observed with increasing temperature.

A more quantifiable picture of the described effects can
be obtained by plotting the degree of dissociation,

α =
2NH2

NH
, (1)

as a function of temperature (Fig. 3). Here NH2
is the

average number of hydrogen molecules at the given den-
sity and temperature conditions. NH the total number of
hydrogen nuclei irrespectively of the dissociation state.

At higher density, fewer molecules are present at the
same temperature as a result of pressure dissociation.
While at low density, the dissociation proceeds gradually
with temperature, the curves for rs ≤ 1.75 show a rapid
drop around 2500 K, which is related to the ∂P/∂T |V < 0
region.

The dissociation degree and the binary distribution
function are nevertheless not sufficient to draw a com-
plete picture of the structure and dynamics in fluid hy-
drogen. The lifetime of the molecules must also be taken
into account. Figure 3 shows that at rs = 1.75, for exam-
ple, even though on average more than 50% of the protons
are found in paired states, the lifetime of these pairs is
short (less than 2 H2-vibrations on average); there is a
continuous formation and destruction of pairs of hydro-
gen atoms. It is therefore imprecise to classify the fluid
as either molecular-atomic or pure atomic as there is no
unique criterion for a molecule. However, the results for
the EOS obtained by our simulations do not depend on
the number of molecules or atoms but only on tempera-
ture and density.

In addition to the dissociation of hydrogen molecules,
of interest are the changes in the electronic structure
taking place in the same parameter region. As the sys-
tem becomes denser or the temperature is raised (still
T ≪ TF ), the interactions between the molecules in
the fluid become stronger, and the formerly well-bound
electrons become delocalized. This is associated with a
strong increase in the electrical conductivity and is usu-
ally referred to as metallization53. The effect can be
seen in the electronic density of states (DOS), namely
the band gap, as shown in Fig. 4. We calculated the
Kohn-Sham eigenvalues in GGA for several snapshots
and estimated the bandgap in fluid hydrogen along the
MD trajectory. For rs = 1.6, a closing of the bandgap
can be observed around T = 2000K. This means that a
metallic-like state may have been formed. Furthermore,
as indicated by the red lines in Fig. 4, the degree of dis-
sociation incorporating lifetime effects decreases strongly
around the same temperature. To distinguish this degree

0 1000 2000 3000 4000 5000 6000 7000
T [K]

0.0

0.2

0.4

0.6

0.8

1.0

2
N

H
2
/N

H

rs=2.4
rs=1.86
rs=1.75
rs=1.6

FIG. 3: Dissociation degree of the hydrogen molecules in pure
hydrogen. The dissociation degree obtained by simply count-
ing all pairs of hydrogen atoms with distance shorter than
rcut = 1.8 a.u. is plotted with dotted lines. Full lines take
into account the lifetime of these pairs as well (10 H2 vibra-
tions at least to be counted as molecule).
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FIG. 4: Bandgap calculated in GGA for fluid hydrogen and
hydrogen-helium mixture (blue curves) as well as dissociation
degree for the two systems (red curves). The density corre-
sponds to rs = 1.6. The dissociation degree is determined by
taking into account lifetime effects.

of dissociation we do not consider proton pairs with less
than 10 H2 vibrations (t = 10×7.6 fs) as being molecules.
The closing of the bandgap and dissociation of hydrogen
molecules happen at the same time.

It is well known that the GGA underestimates the
bandgap. More sophisticated calculations54 (for a H2

solid) give a bandgap of ∼ 0.6 Ha at T = 300 K. The
value we obtain is 4 times smaller. Hood and Galli55

compared values obtained with DFT (GGA) to quan-
tum Monte Carlo (QMC) gaps for liquid deuterium. For
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T = 3000 K and rs = 1.6, they found the QMC gap
twice as large as the DFT gap. The actual temperature
of metallization is thus somewhat higher. To improve
the description of the electronic properties of the fluid,
one needs to use a more accurate method than DFT-
GGA, which is beyond the scope of this article. Still, it
is worth noting that we find a continuous transition from
an insulating to a conducting state, as determined by the
closing of the gap. We do not observe molecules in the
conducting phase as found by Weir et al.

53 or Johnson et

al.
38.

While there is a general agreement about dissociation,
ionic, and electronic structural changes throughout var-
ious papers, this agreement is only qualitative. As can
be seen in Fig. 1, different methods give very different
results for the EOS of dense fluid hydrogen. Whereas for
the lowest density shown in Fig. 1, the agreement be-
tween the free energy model of Saumon and Chabrier7,8

and our results is reasonable, deviations up to 20% (at
rs = 1.86) and even 24% (at rs = 1.75 and above) can
be found for higher densities. The free energy model
overestimates the pressure considerably. The degrees of
dissociation calculated with the free energy method show
a significantly higher fraction of molecules than we find
in our simulations. However, even a linear extrapolation
of our pressure results of the molecular phase to higher
temperatures (a linear scaling very similar to the one at
rs = 2.4 is assumed) only reduces the discrepancy with
the result of Saumon and Chabrier but can not elimi-
nate the difference completely. Deviations of this order
may signify completely different physics inside giant gas
planets and it is of great importance to discuss the dis-
crepancies.

Comparisons with different first principle calculations
can help resolve this issue, as agreement between different
independent ab initio methods would be a strong indica-
tion for correct results. Figure 5 provides such a com-
parison. In addition to our results, PIMC data29, wave
packet molecular dynamic (WPMD) results57,60,61 and
older DFT-MD points58 are shown. Furthermore, the
isochores of two different models in the chemical picture
are added: fluid variational theory (FVT)56 as well as the
linear mixing (LM) model14. They start from a mixture
of atoms and molecules and their (Lennard-Jones type)
interactions to minimize the free energy with respect to
the fraction of the constituents. The isochore provided
by WPMD deviates from the other ones by more than a
factor of two at lower temperatures and by 25% at the
highest temperatures shown here. PIMC is not a ground
state method and is more capable of determining the EOS
at higher temperatures. Information about fluid hydro-
gen or even about dissociation of hydrogen molecules can
not be obtained. For higher temperatures, PIMC results
lie between DFT-MD and FVT data. Better agreement
is achieved between the two DFT-MD methods, FVT and
LM. In the region with temperatures less than 10000 K
some features of the curves are still different. The first
principle simulations show a region with a reduced or
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FIG. 5: Pressure-temperature relation for a single isochore
of hydrogen with different methods for rs = 2. Our DFT-
MD results are shown in blue with circles. FVT by Juranek
et al.56 (solid black line), PIMC by Militzer et al.29 (dot-
ted line, triangles), WPMD by Knaup et al.57 (dashed line,
squares), DFT-MD by Collins et al.58 (dashed, diamonds),
LM by Ross14 (long-short dashed), and this works DFT-MD
results (blue, dots). The black dot indicates the pressure of a
H2-solid at T = 300 K59. The error bars of simulation results
are within the size of the markers.

even slightly negative slope (smooth transition from a
purely molecular to an atomic fluid) around 5000 K. Such
a behavior is absent in the FVT model. The LM method,
on the other hand, shows a similar feature but on a much
wider temperature range. Thus, there is no unique pic-
ture of the EOS of dense fluid hydrogen. Deviations be-
tween the results of different first principle methods are
related to the treatment of the electrons. Inconsistencies
between the chemical picture, as a basis for FVT and LM,
and the physical picture, as a foundation of DFT-MD or
PIMC, contribute to the non-unique description. How-
ever that may be, DFT-MD provides reproducible results
(the two DFT-MD studies were performed with different
codes) and FVT seems to be reliable in the molecular
fluid phase.

Lastly, we consider more closely the intermediate den-
sity range at a temperature typical for the interior of
Jupiter. Figure 6 shows such an isotherm for T =
5000 K. Our result gives the lowest pressure. Saumon
and Chabrier’s EOS predicts a pressure up to 20% higher
as stated above. The blue curve, as well as the green
one, show a plasma phase transition (PPT). According to
Saumon and Chabrier the PPT is expected at a density of
approximately ρ = 1 g·cm−3 (P = 200 GPa). The FVT
results with13 or without10 extension to ionized plasmas
gives an isotherm right between the two above mentioned
results. These methods predict a PPT at slightly smaller
density of ρ = 0.8 g·cm−3 and P = 100 GPa). At both
densities, neither we nor Weir et al.

53 have evidence for
such a PPT. Instead, a continuous transition from a
molecular to an atomic state takes place at lower temper-
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lar results as FVT.

atures. It is nevertheless remarkable that the inclusion
of ionization reduces the pressure and gives better agree-
ment. From our simulation we have no information about
possible intermediate ionized states of hydrogen.

B. Hydrogen-Helium Mixtures

So far we have studied pure hydrogen under giant gas
planet conditions. A further degree of freedom is added
if one considers a mixture of hydrogen and helium. He-
lium, even in small fractions, changes the EOS signifi-
cantly. Helium has an influence on the formation and
dissociation of hydrogen molecules, and it changes the
ionic structure of the liquid as well as the electronic prop-
erties. The transition from a molecular state into an
atomic state may be displaced or its character changed.
Further, hydrogen and helium have been predicted to
phase-separate in giant planet interiors.6,62,63.

Models in the chemical picture use the linear mixing
rule to add hydrogen and helium portions to the EOS64.
Contributions from the entropy of mixing are ignored
and all the interactions between the two subsystems are
left out. First principle calculations include all these ef-
fects since a mixture of the two fluids can be simulated
directly. The demixing line was calculated by classical
Monte Carlo65, by ground state DFT calculations16, and
by Car Parinello MD43.

Here, we primarily present results for a hydrogen-
helium mixture at a mixing ratio of x = 0.5. The mixing
ratio is defined as

x =
2NHe

(2NHe + NH)
, (2)

where NH and NHe are the number of hydrogen and he-
lium nuclei per unit volume. This definition weights the
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FIG. 7: Pressure isotherms of a mixture of hydrogen and he-
lium (x=0.5) for different temperatures. High density limiting
results for hydrogen and an electron gas are shown addition-
ally.

species according to the number of electrons that they
contribute to the system. The corresponding Wigner-
Seitz radius is computed from the total number of elec-
trons. For many simulations, a mixing ratio of x = 0.5
was chosen so that large interaction effects between the
two species could be observed.

Figure 7 shows the pressure for a number of isotherms
for a hydrogen-helium mixture. The maximum density
shown here corresponds approximately to conditions in
the center of Jupiter (rs = 0.9 , ρ = 3.6 g cm−3). It
is demonstrated that temperature is not important for
higher densities. since all the isotherms merge into the
one with the lowest temperature. At the highest densities
shown here the temperature contribution of the ions to
the pressure is approximately 5%. The ions are strongly
coupled and their interaction contribution to the EOS is
of the order of 30%. The rest of the deviation from the
ideal degenerate system is given by nonidealities in the
electron gas and interactions between electrons and ions.
For even higher densities the electronic contributions will
become even more important since they rise with density
as n5/3 and thus faster than any other contribution.

The role of helium for the EOS of the mixture can
be studied in Fig. 8. The pressure is slightly lowered
over the whole temperature range, but more important
is the fact that the region with negative ∂P/∂T |V has
vanished (for x = 0.5). The additional curve for Jupiter’s
hydrogen-helium mixing ratio (x=0.14) shows an inter-
mediate step where the region with negative slope of the
pressure does still exist but is reduced in markedness and
in the temperature range of existence. More helium in the
mixture means a shift of the negative slope to higher tem-
peratures and a decrease of the depth of the minimum.
For very high temperatures, the EOS of pure hydrogen



7

0 1000 2000 3000 4000 5000 6000 7000
T [K]

30

40

50

60

70

80

90

100

110

120
P

[G
Pa

] H-He, rs=1.6
H-He, rs=1.75
H, rs=1.6
H, rs=1.75

H-He, Jupiter, rs=1.6

FIG. 8: Pressure isochores for a mixture of hydrogen and he-
lium (x=0.5, solid lines) and for pure hydrogen (dotted lines)
at two different densities. For rs = 1.6 an additional curve
for Jupiter’s helium ratio (x=0.14) was added (back dashed
line).

1000 2000 3000 4000 5000 6000 7000
T [K]

0.0

0.2

0.4

0.6

0.8

1.0

2
N

H
2
/N

H

. . . . .
.

.

.

.
. . . .

. . . .

.

.

. . . . . . .

Hydrogen
rs=2.4
rs=1.75

H-He
rs=2.4
rs=1.75

FIG. 9: Comparison of dissociation degrees (incorporating
life time effects) in pure hydrogen and in hydrogen-helium
(x=0.5). The solid lines are nonlinear fits to the data points.

and mixtures show a very similar behavior. Helium has
a more significant influence on the pressure at lower tem-
peratures.

These two different regions can clearly be assigned to
different dissociation regimes (see Fig. 9). The transi-
tion from a molecular phase to an atomic phase, while
still smooth, takes place at lower temperature and over
a shorter range of temperature in hydrogen than in the
mixture. This relatively rapid change in the microstruc-
ture of the fluid is the reason for the drop in the pressure.

The vanishing of the molecules in hydrogen and their ex-
tended existence in the mixture can be confirmed with
the help of pair correlation functions in Fig. 10. The
molecular peak (first peak) drops considerably faster in
pure hydrogen. This behavior and the higher peak in the
mixture give clear evidence for molecules at the high-
est temperatures shown here. If we take the position
of the first maximum as a measure for the mean bond
length of the hydrogen molecule, we obtain a value of
〈d〉 = 1.37 a0 for pure hydrogen. In the mixture (with
ratio of x = 0.5) this value changes to 〈d〉 = 1.29 a0 which
means a shortening of the bond by 6%. The same can
be obtained by means of nearest neighbor distributions
as in Fig. 11. The first neighbor distribution considers
the nearest neighbor only and effects of particles farther
away are removed from the curve. Bond lengths obtained
from Fig. 11 are slightly bigger. In addition, a shift of
the bond length in hydrogen from 1000 K to 2000 K is
revealed. The reduction of the bond length of 6% is con-
firmed. The latter value is in rather good agreement
with data by Pfaffenzeller et al.

43. The same conclusion
is derived when comparing pair correlation functions for
pure hydrogen and hydrogen-helium mixtures at constant
pressure instead at constant electronic density.

Figure 9 describes the role of the (electronic) den-
sity during the process of dissociation. Helium stabi-
lizes the molecules. This is due to the higher charge of
Z = 2 of the helium nuclei. The intramolecular bonds de-
pend strongly on the electronic behavior and the space
available. If electronic wavefunctions between different
molecules start to overlap, in other words, when Fermi
statistic becomes important for the electrons of the sys-
tem as a whole, and when the distances between the
particles become so small that interactions between the
molecules are no longer weak, the electrons are forced to
delocalize to obey the Pauli exclusion principle and bond-
ing becomes impossible. Helium under giant gas planet
conditions, in atomic form, binds two electrons closely.
The rest of the hydrogen atoms and electrons are af-
fected less by density and temperature and the molecules
remain stable over a wider range. The helium influence
is thus two-part. First, its stronger Coulomb attraction
binds electrons. Second, (as a consequence) it influences
the many particle state of the electrons.

A phase diagram for molecular and atomic hydrogen
and hydrogen-helium is provided in Fig. 12. Here, pa-
rameter regions for purely molecular, purely atomic as
well as intermediate phases are shown. The diagram
shows the increasing differences between hydrogen and
the mixture with increasing pressure (density) and the
huge differences (especially at high pressure) in the rate
of the transition from a molecular to an atomic state.
The transition region (from 95% to 5%) has nearly the
same size for small pressures in pure hydrogen and in the
mixture. At the other end of the pressure scale hydrogen
changes from molecular to atomic over only 1500 K. In
the mixture the changes are more moderate. At the pres-
sures considered here, pressure dissociation is suppressed
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tures. The order of the curves from top to bottom is the same
as in the legend. The vertical thin dashed lines indicate the
location of the first peak for hydrogen and hydrogen-helium,
respectively.
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FIG. 11: 1st neighbor distribution for hydrogen (dashed lines)
and hydrogen-helium (solid lines) at different temperatures.
The order of the curves from top to bottom is the same as
in the legend. The vertical thin dashed lines indicate the
location of the peak for hydrogen and hydrogen-helium, re-
spectively.

since the slope of the lines with constant dissociation de-
gree is small for higher pressures. A good zeroth approxi-
mation for the behavior of the mixture is given by taking
into account the hydrogen density only for the dissoci-
ation process. In this way, rs = 1.6 for a 50% mixture
of hydrogen and helium would correspond to rs = 2.02
in pure hydrogen. This estimate works quite well for the
5% line, for instance.

Band structure and electronic density of states are af-
fected also by helium. The inner regions of Jupiter are
believed to be made of helium rich metallic hydrogen4.
The conditions under which the mixture becomes metal-
lic strongly depends on the amount of helium. A com-
parison of the (GGA) bandgaps in pure hydrogen and a
hydrogen-helium mixture (x = 0.5) is shown in Fig. 4.
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FIG. 12: Temperature-pressure-plane showing estimated lines
of constant dissociation degree in pure hydrogen and in a
hydrogen-helium mixture (x=0.5). The percentages give the
fraction of hydrogen atoms bound in molecules.
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FIG. 13: Electronic density of states for pure fluid hydrogen,
pure fluid helium, and for a mixture of hydrogen and helium
(x=0.5) at fixed T = 500 K and rs = 1.86. The pressure is
approximately 30GPa. Curves shifted to agree at the Fermi
energy (0 Ha) which is taken in the middle between HOMO
and LUMO.

And while the bandgap in pure hydrogen goes to zero
at relatively low temperatures, the gap in the mixture
remains open over the whole temperature region shown.
This can be traced back to the charge of the helium nu-
cleus which shifts part of the Kohn-Sham eigenvalues to
lower energies and thus increases the gap. The change
in the electronic DOS from a helium system to a mix-
ture to a pure hydrogen system is shown in Fig. 13. The
black peak indicates atoms in fluid helium. The red curve
shows mainly molecules in hydrogen and there are peaks
resulting from intermolecular interaction, too. The blue
curve for the mixture is a superposition of the ones for
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FIG. 14: Electronic density of states for pure fluid hydrogen
and for a mixture of hydrogen and helium (x=0.5) as function
of temperature. The pressure is approximately 100 GPa.

pure systems, namely a helium peak to the left and a hy-
drogen molecule peak on the right hand side. The bands
on the right hand side are empty since the curves are
normalized so that the Fermi energy is at 0 Ha. The po-
sition of the edges of the bands at positive and negative
energy strongly depends on the amount of helium in the
fluid and therefore the width of the bandgap depends on
the helium amount.

The dependence of the DOS on temperature is demon-
strated in Fig. 14. We observe a similar effect as Scan-
dolo did34 although the transition from a mainly molecu-
lar liquid to an atomic fluid is smooth in our calculations.
Due to the larger initial bandgap in the hydrogen-helium
mixture and due to the effect of the helium described
above, the bandgap for this systems remains, even at the
highest temperature shown. Conversely, the gap in the
pure system has completely closed at T = 4000 K.

C. Thermodynamic Properties of Mixtures

We will test the validity of a common approximation
used in determining EOS’s of mixtures. Most of the effort
has been put into the determination of the EOS of pure
systems. By ignoring the exact nature of the interaction
between the pure phases, one can construct the EOS of
any mixture of the original phases with the help of the
linear mixing (LM) approximation

YLM = (1 − x)YH + xYHe , (3)

with x according to Eq. (2) being the fraction of helium
in the mixture and Y being a thermodynamic variable
such as volume, pressure, or internal energy. For the free
energy, an additional term describing the entropy of mix-
ing must be included14. Linear mixing may be performed
at constant chemical potential, at constant volume, or at
constant pressure. For calculations of the internal struc-
ture of giant gas planets, mixing under constant pressure

is the most important. In all cases, the deviation from
LM can be calculated as

∆Ymix(x) = Y (x) − YLM(x) , (4)

where Y (x) is the value obtained by DFT-MD for mix-
ing fraction x and YLM is the LM value computed from
independent simulations results for pure hydrogen and
pure helium.

In this way it is assumed that the potential between
particles of two different species can be written as an
arithmetic average over the interactions in the pure
systems14. This of course works for weak correlations
only. The advantage is that one does not need to know
exactly the interaction between, e.g., hydrogen and he-
lium. This would be necessary for models in the chemical
picture. Therefore, this approximation is used mainly by
chemical models for the description of hydrogen-helium
mixtures7,8,13,56 or even mixtures of atoms and molecules
of hydrogen14. The error introduced is difficult to quan-
tify.

First principle calculations are able to verify the as-
sumptions for LM and the validity of the approxima-
tion since these methods rely on the more fundamental
Coulomb interaction, do not need to assume different in-
teraction potentials between different species, and can
thus simulate mixtures directly. There have been some
investigations concerning the validity of LM by classical
MC and integral equation techniques for classical binary
liquids not including molecules66–69. In these cases, the
deviations from LM found are of the order of 1% and
below.

The first PIMC calculations for hydrogen-helium mix-
tures found deviations from LM at constant volume of
up to 12% for temperatures between 15000 and 60000 K
and giant gas planet densities (rs = 1.86)44. This gives
reason to expect that linear mixing might give a slightly
falsified picture of the EOS of hydrogen-helium at lower
temperatures, too. Again, since the conditions for phase
separation depend strongly on small changes in the EOS
(and thus from deviations from LM) it is crucial to inves-
tigate LM70. The advantage of first principle calculations
is the correct treatment of the degenerate electrons and
bound states, which is missing in the classical simula-
tions.

The error introduced due to LM at constant volume
(constant electronic density) as observed within DFT-
MD is plotted in Fig. 15. Similar to the findings of
other authors44,69, the error is positive. As expected, the
deviation in the pressure from the LM value is biggest
for x = 0.5. Furthermore, increasing temperature causes
an increase in the LM error of up to 12% for the highest
temperature plotted in Fig. 15. The deviation from LM
for a Jupiter like mixing ratio of x ≈ 0.14 ranges from
around zero (T = 500 K) up to 10%. The temperature
inside Jupiter for this density is according to Saumon and
Chabrier7,8 of the order of 5000 K. This means that one
can expect a deviation of approximately 10% of the true
EOS from the one calculated with LM.



10

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
P m

ix
/P

T=1500K
T=3000K
T=4000K

x=NHe/(NH2
+NHe)

rs=1.86

FIG. 15: Mixing error in the pressure due to the linear mixing
approximation at constant volume for various temperatures
as function of the mixing ratio. The electronic density is
rs = 1.86. This corresponds to ̺ = 0.42 g·cm−3 for pure H
and ̺ = 1.66 g·cm−3 for pure He (pressure between 10 GPa
and 40GPa). The symbols represent calculated values, the
lines were obtained with a polynomial fit of fourth order.

1000 2000 3000 4000 5000 6000 7000
T[K]

-0.04

-0.02

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P m
ix

/P

rs=1.86
rs=2.4

rs=1.6
rs=1.75
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The dependence of the error maximum at x = 0.5 from
density and temperature is shown in Fig. 16. The curve
for the smallest density shown here (rs = 2.4) gives rea-
son to conclude that LM is a good approximation for the
pure molecular phase of hydrogen and helium as found
at this density over a wide temperature range. With in-
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FIG. 17: Mixing error in the volume due to the linear mixing
approximation at constant pressure for hydrogen-helium for
various densities and two different mixing ratios of x = 0.5
(solid lines) and x = 0.14 (dashed line) as function of temper-
ature.

creasing density the deviations from LM start to grow as
well and corrections to the pressure become significant for
smaller temperatures. 5% error is reached around 3000 K
for rs = 1.86, around 2500 K for rs = 1.75, and at approx-
imately 1250 K for rs = 1.6. The maximum of ∆Pmix/P
is located at a slightly higher temperature than the tran-
sition from a pure molecular to a mainly atomic phase
in pure hydrogen. The linear mixing rule transfers the
behavior of pure hydrogen in an incorrect way into the
mixture. This causes these deviations of up to approxi-
mately 15%. In addition, it is shown that linear mixing is
not a good approximation for hydrogen-helium systems
containing atoms and molecules. For higher tempera-
tures the deviation from linear mixing declines although
in the considered range it does not reach values below
5% again.

A similar statement can be made for mixing at con-
stant pressure as shown in Fig.17. The same features as
in Fig. 16 can be observed. The maximum of the mixing
error is shifted to lower temperatures for higher densities.
However, the error in the volume introduced by LM is
slightly smaller than the one in the pressure. Comparing
curves with different mixing ratios at constant density in
Figs. 17 and 18 it is obvious that the maximum in the
error is reached at lower temperatures for smaller mixing
ratios x. This is in agreement with the temperature shift
of molecular dissociation as function of the helium ratio
in the system. Less obvious is the actual absolute value
for the deviation from linear mixing. Whereas the error
in the volume never exceeds 5%, the energy is much more
sensitive to deviations from LM with an error of up to
9%.

All, figures 16, 17, and 18 show that LM can be consid-
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ered a good approximation only for systems at low tem-
peratures (T < 1000K) and at very high temperatures
T > 8000K for the densities presented here. In the case
of liquid hydrogen-helium mixtures, these systems con-
sist of weakly interacting hydrogen molecules and helium
atoms (low T ) or of weakly interacting hydrogen and he-
lium atoms (high T ). More complicated situations where
atoms and molecules of hydrogen and helium are involved
and interactions between them are non negligible require
a better description than LM since helium has a signifi-
cant influence on the dissociation degree and the mixture
cannot be considered to be a composition of two fluids.

The figures presented here could suggest that LM is
a rather good approximation for all of the higher tem-
peratures. This is by no means the case. As stated
before, LM works well only for nearly ideal systems.
When the temperature becomes too high so that the
gas of hydrogen and helium atoms experiences ioniza-
tion (this can be accomplished by increasing the density
as well) and a partially ionized plasma is created, the
merely short ranged interatomic interactions are replaced
by long range Coulomb forces and nonideality contribu-
tions to the EOS become very important again. In this
regime, LM breaks down again, as was demonstrated by
Militzer by means of PIMC44.

IV. SUMMARY

We use first principle DFT-MD simulations to study
equilibrium properties of hydrogen and hydrogen-helium

mixtures under extreme conditions. The results obtained
are relevant for the modeling of giant gas planets and for
the principle understanding of the EOS of fluid hydrogen
and hydrogen-helium mixtures.

Our results for pure hydrogen show a smooth transition
from a molecular to an atomic state which is accompanied
by a transition from an insulating to a metallic like state.
In the transition region, we find a negative temperature
derivative of the pressure. The results for the hydrogen
EOS show deviations from widely used chemical models
(up to 20%). In particular, the point of dissociation for
the molecules is obtained at much lower temperatures
than in chemical models. We find satisfying agreement
with previous DFT-MD simulations only.

In particular, we demonstrate the influence of helium
on hydrogen molecules. The presence of helium results
into more stable molecules and an altered transition from
a molecular to an atomic fluid state. Helium reduces the
negative slope of the pressure isochores in the transition
region. The bond length of the hydrogen molecules is
shortened by 6% for x = 0.5. As a result, the degree
of dissociation is lowered and the electronic bandgap is
increased The effect of helium is found to be more impor-
tant for higher densities where the stronger localization
of the electrons prevents degeneracy effects for the elec-
trons to become dominant.

Our analysis of the mixing properties for a x = 0.5
mixture of hydrogen and helium shows that the correc-
tions to the linear mixing approximation are significant.
Maximum EOS corrections of 15% were found for mixing
at constant volume and 8% for mixing at constant pres-
sure. For Jupiter like conditions, corrections up to 5%
were obtained.

The presented results and forthcoming work should
help to clarify long standing questions concerning the
formation process of giant gas planets, help restrict the
core size of Jupiter, and allow one to make predictions
for the hydrogen-helium phase separation.
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