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Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density func-
tional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-
temperature range of 0.387 – 5.35 g cm−3 and 500 K – 1.28×108 K. One coherent equation of
state (EOS) is derived by combining DFT-MD data at lower temperatures with PIMC results at
higher temperatures. Good agreement between both techniques is found in an intermediate temper-
ature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting
law. In order to derive the entropy, a thermodynamically consistent free energy fit is introduced
that reproduces the internal energies and pressure derived from the first-principles simulations. The
equation of state is presented in the form of a table as well as a fit and is compared with different
free energy models. Pair correlation functions and the electronic density of states are discussed.
Shock Hugoniot curves are compared with recent laser shock wave experiments.

I. INTRODUCTION

After hydrogen, helium is the most common element
in the universe. While it rarely occurs in pure form in
nature, it is an endmember of hydrogen-helium mixtures
(HHM) that are the prevalent component in solar and
extrasolar giant gas planets. The characterization of he-
lium’s properties at extreme temperature and pressure
conditions is therefore important for the study of plan-
etary interiors and especially relevant for answering the
question of whether HHM phase-separate in giant planet
interiors1,2. In most planetary models, the equation of
state (EOS) of HHM was inferred from the linear mixing
approximation at constant pressure and temperature us-
ing the EOSs of pure hydrogen and helium. The latter is
the central topic of this article.

Hydrogen and helium share some common properties.
Both are very light and exhibit rich quantum properties
at low temperature. More importantly for this paper, the
helium atom and the deuterium molecule have similar
masses and both have two elemental excitation mecha-
nisms that determine their behavior at high temperature.
The helium atom has two ionization stages while deu-
terium molecules can dissociate and the resulting atoms
can be ionized. However, helium is without question
simpler to characterize at high pressure. The crystal
structure is hexagonal closed-packed under most (P, T )
conditions3,4 while in solid hydrogen, different degrees
of molecular rotational ordering lead to several phases
that deviate from the h.c.p. structure. Hydrogen is ex-
pected to turn metallic at a few hundred GPa while a
much larger band gap must be closed in helium, which
is predicted to occur at 11 200 GPa5,6 according density
functional theory (DFT) and at 25 700 GPa according
to recent quantum Monte Carlo calculations7. The dif-
ference arises because standard DFT methods underesti-
mate the band gap by 4 eV in dense solid helium.

Given the relative simplicity of helium’s high pres-
sure properties, one expects that there would be less

of a controversy in the EOS than for hydrogen. This
makes helium a good material to test novel experimental
and theoretical approaches. For hydrogen, the results of
first laser shock experiments that reached megabar pres-
sures had predicted that the material would be highly
compressible under shock conditions and reach densities
six times higher than the initial state8,9. Later exper-
iments10–13 showed reduced compression ratios close to
4.3, which were in good agreement with first-principles
calculations14,15. Good agreement between gas gun ex-
periments by Holmes et al.

16 and first-principles simula-
tions has also been demonstrated17,18. The same is true
for helium where very good agreement between early gas
gun experiments by Nellis et al.

19 and first-principles sim-
ulations has been found20.

Recently the first laser shock experiments were per-
formed on precompressed helium samples21. The mea-
surements confirmed the theoretically predicted trend20

that the shock compression ratio is reduced with in-
creasing precompression. However, there is a discrep-
ancy in the magnitude of the compression. Shock mea-
surements21 without precompression showed compression
ratios of about 6 while first-principles simulation20 pre-
dicted only 5.24(4). The discrepancy between theoretical
and experimental predictions is reduced for higher pre-
compressions. For samples that were precompressed to
3.4-fold the ambient density, theory and experiment are
in agreement.

The properties of fluid helium change from hard-sphere
liquid at low pressure and temperature to ultimately a
two-component plasma, after ionization has occurred at
high pressure and temperature. The associated insulator-
to-metal transition has been the topic of three recent
theoretical studies that all relied on DFT methods. Ki-
etzmann et al.

22 studied the rise in electrical conductiv-
ity using the Kubo-Greenwood formula and compared
with results of shock-wave experiments by Ternovoi et

al.
23. Kowalski et al.

6 studied dense helium in order to
characterize the atmosphere of white dwarfs. This paper
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went beyond the generalized gradient approximation by
considering hybrid functionals. Stixrude and Jeanloz24

studied the band gap closure in the dense fluid helium
over a wide range of densities including conditions of gi-
ant planet interiors. Two recent studies of Jupiter’s in-
terior25,26, to different extent, relied on a helium EOS
derived from DFT-MD.

This article provides the EOS for fluid helium over a
wide range of temperatures (500 K–1.28×108 K) and den-
sities (0.387–5.35 g cm−3 corresponding to a Wigner-Seitz
radius interval of rs=2.4–1.0 where 4

3πr3
s = V/Ne) by

combining two first-principles simulation methods, path
integral Monte Carlo (PIMC) at higher temperatures
and density functional molecular dynamics (DFT-MD) at
lower temperatures. PIMC is very efficient at high tem-
perature but becomes computationally more demanding
with decreasing temperature because the length of the
path scale like 1/T . DFT is a very efficient groundstate
method but with increasing temperature more and more
unoccupied orbitals need to be included, which eventu-
ally adds considerably to the computational cost.

The temperature range of the PIMC simulations was
significantly extended compared to our earlier work20

that focused exclusively on shock properties alone. Here,
the region of validity of both first-principles methods is
analyzed and good agreement for EOS at intermediate
temperatures is demonstrated. The PIMC calculations
are extended to much higher temperatures until good
agreement with the Debye-Hückel limiting law is found.
In the density interval under consideration, the entire
EOS of nonrelativistic, fluid helium has been mapped
out from first principles. All EOS data are combined into
one thermodynamically consistent fit for the free energy,
and the entropy is derived. The structure of the fluid is
analyzed using pair correlation functions and, finally, ad-
ditional results for shock Hugoniot curves are presented.

II. METHODS

Path integral Monte Carlo27 is the most appropriate
and efficient first-principles simulation techniques for a
quantum system at finite temperature. Electrons and
nuclei are treated equally as paths, although the zero-
point motion of the nuclei as well as exchange effects
are negligible for the temperatures under consideration.
The Coulomb interaction between electrons and nuclei is
introduced using pair density matrices that we derived
using the eigenstates of the two-body Coulomb prob-
lem28. The periodic images were treated using an op-
timized Ewald break-up29 that we applied to the pair
action30. PIMC includes all correlation effects, which for
example leads an exact treatment of the isolated helium
atom.

PIMC simulations with more two electrons in a dense
system suffer from a fermion sign problem, which is the
result of the near complete cancellation of positive and
negative contributions to the many-body density matrix
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FIG. 1: The upper panel shows the finite size dependence of
the pressure as function of the number atoms, N , as pre-
dicted from PIMC simulations with free-particle nodes at
T=125 000 K and rs = 1.86. The lower panel compares the
finite size dependence of DFT-MD simulations and classi-
cal Monte Carlo calculations using the Aziz pair potential
at T=10 000 K and rs = 2.4.

in degenerate fermionic systems. In groundstate quan-
tum Monte Carlo methods31, this problem is solved by
introducing the fixed node approximation where walkers
are prohibited from enter negative regions of a trial wave
function, ΨT (R) > 0. Most often ΨT is represented by
a Slater determinant filled with single particle orbitals
derived with the Hartree-Fock method or from density
functional theory. Recent studies found significant im-
provements by considering backflow wave functions32,33

and Pfaffians34.
The fixed node approximation in fermionic PIMC35,36

is more complicated because one not only needs an an-
alytical approximation to the groundstate wave function
but to the many-body density matrix, ρT (R,R′; β), over
a range of temperatures, T = 1/β,

ρF (R,R′; β) =
1

N !

∑

P

(−1)P
∫

R→PR
′

ρT (R,Rt;t)>0

dRt e−S[Rt], (1)

The action, S[Rt], determines the weight of every path.
The nodal restriction, ρT (R,Rt; t) > 0, is enforced at
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every point on the path, R → PR
′, and guarantees that

only positive contributions from the sum over permuta-
tions, P , enter when diagonal elements of density matrix
elements, ρF (R,R′ = R; β), are computed. In general
observables are derived from,

〈

Ô
〉

=

∫

dR
∫

dR
′ 〈R| Ô |R′〉 ρF (R′,R; β)

∫

dR ρF (R,R; β)
(2)

but for the internal, kinetic, and potential energy as well
as for the pressure and pair correlation functions, but not
for the momentum distribution, diagonal elements are
sufficient27, which means all PIMC simulation for this
study were performed with closed paths, R → PR.

The most common approximation to the trial density
matrix is a Slater determinant of single particle density
matrices,

ρT (R,R′; β) =

∣

∣

∣

∣

∣

∣

ρ[1](r1, r
′
1; β) . . . ρ[1](rN , r′1; β)

. . . . . . . . .
ρ[1](r1, r

′
N ; β) . . . ρ[1](rN , r′N ; β)

∣

∣

∣

∣

∣

∣

.

(3)
The free particle nodal structure is obtained by entering
the density matrices of noninteracting particles,

ρ
[1]
0 (r, r′; β) = (4πλβ)−d/2 exp

{

−
(r− r

′)2

4λβ

}

, (4)

with λ = h̄2/2m, which becomes exact in the limit of high
temperature. The variational density matrix (VDM) ap-
proach37 is currently the only available technique that
goes beyond free particle nodal approximation by includ-
ing interaction effects into the PIMC nodal structure.
This approach is more accurate but also more demand-
ing computationally. Most results in this article will be
derived with free particle nodes but some comparisons
with VDM nodes will be presented.

The DFT-MD simulations were performed with either
the CPMD code38 using local Troullier-Martins norm-
conserving pseudopotentials39 or with the Vienna ab ini-
tio simulation package40 using the projector augmented-
wave method41. Exchange-correlation effects were de-
scribed by the Perdew-Burke-Ernzerhof generalized gra-
dient approximation42. The electronic wave functions
were expanded in a plane-wave basis with energy cut-off
of 30-50 Hartrees. Most simulations were performed with
N=64 using Γ point sampling of the Brillioun zone. An
analysis of finite size effect is presented in the following
section.

The nuclei were propagated using Born-Oppenheimer
molecular dynamics with forces derived from either the
electronic ground state or by including a thermal pop-
ulation of unoccupied electronic orbitals43 when they
make nonneglible contributions to the energy or pres-
sure in thermodynamic equilibrium at elevated tempera-
tures. By comparing with PIMC, it will be demonstrated
that the thermal population of unoccupied Kohn-Sham
orbitals leads to an accurate description of the EOS at
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FIG. 2: Comparison of the relative excess pressure derived
from PIMC (solid lines) and DFT-MD. The dashed and the
dash-dotted lines show results from DFT-MD simulations us-
ing electronic groundstate and for Tel = Tion, respectively.

high temperature and density. This extends the applica-
bility range of DFT, which was developed as a ground-
state electronic structure method.

III. EQUATION OF STATE

An analysis of finite size dependence of the EOS results
is important since all simulations are performed with a
finite number of particles under periodic boundary con-
ditions. Figure 1 gives two examples for the finite size
analysis that we have performed at various temperature
and density conditions. At 10 000 K and rs = 2.4, he-
lium can be characterized as a hard-sphere fluid. The
artificial periodicity of the nuclei dominate the finite size
errors. Simulations with N = 64 atoms are sufficiently
accurate for the purpose of this study. The DFT-MD
results also agree surprisingly well with classical Monte
Carlo calculation using the Aziz pair potential44, which
explains why both methods give fairly similar Hugoniot
curves as long as thermal electronic excitations are not
important20.

The upper panel of Fig. 1 shows PIMC results for
125 000 K where a substantial part of the pressure comes
from the thermally excited electrons. They are still cou-
pled to the motion of the nuclei, which leads to effective
screening. In consequence, the finite size dependence of
the pressure is reduced significantly, and a simulation
with N = 16 atoms exhibits a finite size error of only 1%
compared with 3% at lower temperature. This is the rea-
son why PIMC simulations with 16 atoms already give a
fairly accurate shock Hugoniot curve20. However, most
PIMC results reported in Tab. I were obtained with 32
atoms and some with 57 atoms. Already 32 atoms lead to
well converged pressures unless one is interested in very
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FIG. 3: Excess internal energy per electron relative to the
ideal plasma model at a density of rs=1.86. The circles show
PIMC results. In the upper panel, the open squares and di-
amonds show DFT-MD results using the electronic ground-
state and for Tel = Tion, respectively. The filled squares shows
DFT-MD results corrected by constant shift corresponding to
the DFT error of the isolated helium atom. In lower panel,
PIMC results are compared with the Debye model.

high temperatures, above 107K, where all atoms are ion-
ized and the coupling is very weak. Although the total
pressure is dominated by the kinetic term, the accurate
determination of the small contribution from the inter-
actions shows an increased finite size dependence that
requires simulation with 57 atoms in some cases. In gen-
eral, the weak-coupling limit is difficult to study with
finite-size simulations45,46. Also at very high density, be-
yond the range considered here, electrons approach the
limit of an ideal Fermi gas and form a rigid background.
The remaining Coulombic subsystem of ions is expected
to require simulations with several hundreds of parti-
cles47. In this regard, the electronic screening makes our
simulations affordable.

Figure 2 compares the pressures obtained from PIMC

TABLE I: EOS table with pressures, internal and free ener-
gies per electron derived from (a) DFT-MD with 64 atoms (a
uniform ∆E/Ne = −0.01919 Ha correction was added to ac-
count for missing DFT correlation energy in the helium atom),
PIMC with (b) 32 atoms, (c) PIMC with 57 atoms, and (d)
Debye-Hückel limiting law. The numbers in brackets indi-
cate the statistical uncertainties of the DFT-MD and PIMC
simulations for the corresponding number trailing digits.

rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)
2.4a 500 1.420(10) -1.449873(7) -1.4554
2.4a 1000 2.045(14) -1.448401(10) -1.46135
2.4a 3000 4.69(3) -1.44273(3) -1.49126
2.4a 5000 6.98(4) -1.43727(3) -1.52534
2.4a 10000 12.49(4) -1.42395(5) -1.61873
2.4a 20000 22.19(8) -1.39427(12) -1.82386
2.4a 40000 43.37(11) -1.2997(2) -2.28643
2.4a 60000 68.27(10) -1.1748(2) -2.80627
2.4a 80000 96.93(12) -1.02525(7) -3.37236
2.4b 125000 172.3(6) -0.6667(17) -4.77369
2.4b 250000 445.7(6) 0.477(2) -9.31702
2.4b 333333 651.4(9) 1.237(3) -12.6707
2.4b 500000 1067.7(1.0) 2.634(3) -19.922
2.4b 571428 1249.9(9) 3.216(3) -23.1952
2.4b 666667 1484.2(5) 3.9507(16) -27.6612
2.4b 800000 1815.5(1.2) 4.972(4) -34.0708
2.4b 1×106 2308.4(7) 6.470(2) -43.9954
2.4b 2×106 4745.2(8) 13.754(2) -97.4249
2.4b 4×106 9587.6(1.2) 28.102(4) -213.949
2.4d 8×106 19253 56.72 -466.803
2.4d 16×106 38577 113.80 -1013.36
2.4d 32×106 77205 227.87 -2184.48
2.4d 64×106 154445 455.92 -4683.43
2.4d 128×106 308916 911.97 -10002.6
2.4d 256×106 617849 1824.04 -21267.5
2.4d 512×106 1235711 3648.14 -45052.4
2.4d 1024×106 2471430 7296.32 -95193.5
2.4d 2048×106 4942866 14592.67 -200489

and DFT-MD simulations for several densities. At rs =
1.86, thermal population of unoccupied electronic states
becomes important above 20 000 K. Both first-principles
method are in very good agreement, which is the founda-
tion for the coherent EOS reported in this paper. Reason-
ably good agreement between PIMC and DFT-MD was
reported for hydrogen earlier48. Figure 2 is a stringent
test because it compares only the pressure contributions
that result from the particle interactions. When one re-
moves the ideal gas contributions, P0, one has a bit of a
choice for the corresponding noninteracting system. At
very high temperature, one wants to compare with an
ideal Fermi gas of electrons and nuclei. At low temper-
ature, however, comparing with a gas of noninteracting
atoms is preferred. To combine these to limiting cases,
we construct a simple chemical model that includes neu-
tral atoms, He+ and He2+ ions as well as free electrons.
The ionization state is derived from the Saha equilibrium
using the following binding energies, EHe = −2.9037 Ha,
EHe+ = −2 Ha. Besides the binding energies, no other
interactions are considered.
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TABLE II: Table I continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

2.2a 500 2.74(2) -1.449495(13) -1.45451
2.2a 1000 3.77(3) -1.44787(2) -1.4601
2.2a 3000 7.59(3) -1.44186(2) -1.48855
2.2a 5000 10.81(6) -1.43615(3) -1.5214
2.2a 10000 18.23(7) -1.42256(5) -1.61205
2.2a 20000 31.39(7) -1.39256(9) -1.812
2.2a 40000 59.54(13) -1.30036(19) -2.2635
2.2a 60000 92.10(11) -1.17937(16) -2.77064
2.2a 80000 129.52(10) -1.03399(12) -3.32222
2.2b 125000 223.9(7) -0.6962(16) -4.68439
2.2b 250000 569.6(7) 0.3971(16) -9.08923
2.2b 500000 1371.3(6) 2.5403(14) -19.3777
2.2b 1×106 2981.1(7) 6.3896(17) -42.807
2.2b 2×106 6148.3(8) 13.694(2) -95
2.2b 4×106 12438.6(1.7) 28.059(4) -209.039
2.2d 8×106 24982 56.67 -456.924
2.2d 16×106 50075 113.77 -993.605
2.2d 32×106 100227 227.85 -2144.93
2.2d 64×106 200508 455.91 -4604.15
2.2d 128×106 401053 911.96 -9843.99
2.2d 256×106 802134 1824.03 -20951.2
2.2d 512×106 1604287 3648.13 -44420.5
2.2d 1024×106 3208587 7296.31 -93928.4
2.2d 2048×106 6417184 14592.66 -197960

2a 500 6.101(13) -1.448584(6) -1.45297
2a 1000 7.59(2) -1.446835(11) -1.45806
2a 3000 13.57(5) -1.44022(3) -1.48466
2a 5000 18.07(7) -1.43433(4) -1.51606
2a 10000 28.62(11) -1.42013(8) -1.60363
2a 20000 47.02(12) -1.38968(11) -1.79771
2a 40000 84.72(12) -1.30039(15) -2.23673
2a 60000 128.66(14) -1.18357(12) -2.72986
2a 80000 178.84(19) -1.0433(2) -3.26574
2b 125000 297.4(7) -0.7291(12) -4.58614
2b 250000 745.9(7) 0.3112(13) -8.84403
2b 500000 1800.9(8) 2.4269(14) -18.7895
2b 1×106 3941.2(1.0) 6.2898(17) -41.5111
2b 2×106 8163.1(1.5) 13.621(3) -92.3417
2b 4×106 16544(2) 28.009(4) -203.653
2d 8×106 33228 56.61 -446.089
2d 16×106 66633 113.73 -971.926
2d 32×106 133390 227.82 -2101.53
2d 64×106 266868 455.88 -4517.11
2d 128×106 533797 911.95 -9669.7
2d 256×106 1067636 1824.02 -20604.1
2d 512×106 2135303 3648.12 -43727.2
2d 1024×106 4270628 7296.31 -92540.1
2d 2048×106 8541271 14592.66 -195186

This approach smoothly connects the low- and high-
temperature limits. When we refer to excess pressures
and internal energies below we mean the difference to
this ideal chemical model. For the correct interpretation
of the presented graphs, it should be pointed out that the
pressures and energies of the ideal model depend on the
Saha ionization equilibrium. If the ideal system exhibits
a higher degree of ionization than the simulation results,

TABLE III: Table II continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

1.86a 1000 13.55(3) -1.445347(12) -1.45574
1.86a 3000 21.50(8) -1.43837(4) -1.48081
1.86a 5000 28.04(9) -1.43196(4) -1.51097
1.86a 10000 41.40(10) -1.41740(6) -1.59608
1.86a 20000 65.16(13) -1.38638(9) -1.7856
1.86a 40000 112.98(18) -1.29844(18) -2.2149
1.86a 60000 167.7(2) -1.1854(2) -2.69739
1.86a 80000 229.42(15) -1.04980(12) -3.22147
1.86c 125000 378(2) -0.743(3) -4.51072
1.86b 250000 918.6(1.3) 0.2491(18) -8.65932
1.86b 333333 1340.7(1.3) 0.9607(18) -11.7193
1.86b 500000 2214.5(1.7) 2.336(2) -18.3468
1.86b 571428 2595(2) 2.910(3) -21.3458
1.86b 666667 3104(3) 3.661(4) -25.4472
1.86b 800000 3818(3) 4.699(4) -31.3521
1.86b 1×106 4876.7(1.5) 6.212(2) -40.5306
1.86b 2×106 10128(3) 13.559(3) -90.3193
1.86b 4×106 20550(5) 27.959(7) -199.554
1.86b 8×106 41316(7) 56.543(9) -437.845
1.86d 16×106 82822 113.69 -955.409
1.86d 32×106 165822 227.79 -2068.45
1.86d 64×106 331768 455.87 -4450.87
1.86d 128×106 663625 911.93 -9537.1
1.86d 256×106 1327312 1824.01 -20338.8
1.86d 512×106 2654668 3648.12 -43196.4
1.86d 1024×106 5309366 7296.30 -91478.5
1.86d 2048×106 10618754 14592.66 -193062
1.75a 1000 22.14(4) -1.443419(13) -1.45302
1.75a 3000 32.35(11) -1.43604(4) -1.47673
1.75a 5000 40.66(13) -1.42933(5) -1.50576
1.75a 10000 57.60(13) -1.41415(6) -1.58867
1.75a 20000 87.06(17) -1.38263(11) -1.77422
1.75a 40000 144.6(3) -1.2961(3) -2.19531
1.75a 60000 210.43(19) -1.18602(16) -2.66885
1.75a 80000 284.6(3) -1.05398(16) -3.18308
1.75b 125000 454.4(1.0) -0.7647(12) -4.44653
1.75b 250000 1098.0(1.1) 0.2015(13) -8.50508
1.75b 500000 2639.1(1.6) 2.2626(17) -17.9781
1.75b 1×106 5831.7(2.0) 6.143(2) -39.7109
1.75b 2×106 12139(2) 13.503(3) -88.6228
1.75b 4×106 24656(3) 27.915(4) -196.115
1.75b 8×106 49587(8) 56.501(10) -430.926
1.75d 16×106 99420 113.65 -941.531
1.75d 32×106 199083 227.76 -2040.64
1.75d 64×106 398335 455.85 -4395.24
1.75d 128×106 796789 911.92 -9425.79
1.75d 256×106 1593662 1824.00 -20115.4
1.75d 512×106 3187384 3648.11 -42749
1.75d 1024×106 6374809 7296.30 -90584.7
1.75d 2048×106 12749648 14592.65 -191274

then this alone can lead to negative excess pressures and
energies, which one would normally attribute exclusively
to the interaction of free electrons and ions. This fact is
relevant for the correct interpretation of Fig. 3 where even
the DFT-MD results without thermally excited electrons
exhibit a negative excess internal energy at 80 000 K.
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TABLE IV: Table III continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

1.5a 1000 73.92(10) -1.43440(3) -1.44135
1.5a 2000 84.42(12) -1.42977(4) -1.45018
1.5a 3000 92.66(12) -1.42576(4) -1.46128
1.5a 5000 107.7(2) -1.41813(7) -1.48725
1.5a 10000 137.9(3) -1.40115(11) -1.56358
1.5a 20000 189.4(4) -1.36731(18) -1.73814
1.5a 40000 285.0(4) -1.2819(2) -2.13878
1.5a 60000 387.4(4) -1.1802(2) -2.58963
1.5a 80000 505.3(3) -1.05690(13) -3.07884
1.5b 125000 770(2) -0.7880(16) -4.27821
1.5b 250000 1737.1(1.6) 0.0907(12) -8.11696
1.5b 500000 4114.7(1.6) 2.0709(12) -17.0558
1.5b 1×106 9147.6(1.6) 5.9425(12) -37.6523
1.5b 2×106 19175(2) 13.3390(15) -84.3488
1.5b 4×106 39062(5) 27.782(4) -187.433
1.5b 8×106 78690(10) 56.411(8) -413.442
1.5c 16×106 157860(7) 113.544(5) -906.451
1.5d 32×106 316058 227.68 -1970.31
1.5d 64×106 632486 455.79 -4254.46
1.5d 128×106 1265232 911.88 -9143.99
1.5d 256×106 2530649 1823.97 -19550.3
1.5d 512×106 5061428 3648.09 -41618.1
1.5d 1024×106 10122947 7296.28 -88324.9
1.5d 2048×106 20245959 14592.64 -186751

1.25a 3000 331.6(3) -1.39652(6) -1.42554
1.25a 5000 360.1(5) -1.38761(12) -1.44742
1.25a 10000 418.6(4) -1.36798(8) -1.51449
1.25a 20000 515.4(8) -1.3306(3) -1.67468
1.25a 40000 683.9(5) -1.24615(18) -2.05136
1.25a 60000 865.2(7) -1.1504(2) -2.47506
1.25a 80000 1063.2(1.0) -1.0378(3) -2.93438
1.25a 125000 1565.4(1.5) -0.7817(4) -4.05965
1.25b 250000 3074(3) -0.0069(11) -7.65192
1.25b 500000 6999(4) 1.8502(15) -15.9783
1.25b 1×106 15578(3) 5.6796(11) -35.2469
1.25b 2×106 32897(7) 13.107(3) -79.3259
1.25b 4×106 67243(80) 27.58(3) -177.186
1.25b 8×106 135808(19) 56.263(8) -392.772
1.25b 16×106 272614(30) 113.381(13) -864.979
1.25d 32×106 545908 227.54 -1887.16
1.25d 64×106 1092767 455.69 -4087.74
1.25d 128×106 2186203 911.81 -8810.14
1.25d 256×106 4372877 1823.92 -18883.5
1.25d 512×106 8746088 3648.06 -40286
1.25d 1024×106 17492411 7296.26 -85659.8
1.25d 2048×106 34984988 14592.63 -181419

Figure 3 exhibits the missing correlation energy in
DFT GGA, which underestimates the binding energy of
the atom by ∆E0= 36 mHa compared to the exact non-
relativistic goundstate energy of −2.9037 Ha49–51. This is
the main reason for the deviation of 22 mHa per electron
from the ideal plasma model at 1000K. The ideal plasma
model that was constructed using the exact groundstate
energy. The remainder of the discrepancy, 4 mHa per
electron, is due to the change in the internal energy as-
sociated to the compression to a density of rs = 1.86 and

TABLE V: Table IV continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)
1a 5000 1560.1(5) -1.29739(8) -1.34504
1a 10000 1681.8(7) -1.27401(12) -1.40096
1a 20000 1878.6(1.0) -1.2313(2) -1.5439
1a 40000 2217.0(1.8) -1.1449(3) -1.88916
1a 62500 2608.7(1.8) -1.0456(3) -2.33028
1a 80000 2941(2) -0.9554(4) -2.7022
1a 125000 3890(2) -0.7276(4) -3.73996
1b 250000 6640(6) -0.0380(12) -7.04803
1b 333333 8780(6) 0.4717(12) -9.46272
1b 500000 13687(5) 1.6229(11) -14.6687
1b 571428 15920(5) 2.1410(11) -17.0286
1b 666667 18969(5) 2.8429(11) -20.2721
1b 800000 23334(5) 3.8385(12) -24.9776
1b 1×106 29972(5) 5.3367(12) -32.3609
1b 2×106 63676(11) 12.775(2) -73.2177
1b 4×106 130941(12) 27.326(3) -164.669
1b 8×106 264847(50) 56.052(10) -367.49
1c 16×106 532209(20) 113.270(5) -814.18
1c 32×106 1066140(60) 227.350(14) -1785.39
1d 64×106 2133644 455.50 -3884.05
1d 128×106 4269457 911.68 -8402.62
1d 256×106 8540444 1823.83 -18068.8
1d 512×106 17081968 3647.99 -38656.7
1d 1024×106 34164699 7296.21 -82400.7
1d 2048×106 68329938 14592.59 -174902

to the fact that the comparison is made for 1000K.
To correct for missing correlation energy, we applied a

uniform correction of −∆E0 to all DFT results discussed
later. We may assume that the correction to DFT de-
pends only weakly on temperature and density. Deter-
mining its precise amount more accurately is difficult and
goes beyond the scope of this article.

Despite this DFT insufficiency, one finds reasonably
good agreement in the internal energies reported by
PIMC and DFT-MD. Figure 3 shows that both meth-
ods report very similar increases in the energy resulting
from thermal population of unoccupied electronic states,
which is the basis for constructing one EOS table.

In order to explore the agreement between PIMC and
DFT-MD in more detail, we resort to pressure calcula-
tions for a single configuration of nuclei that we have
obtained from DFT-MD with 57 atoms at 80 000 K. The
nuclear coordinates of the rs = 1.86 snapshot are given
in Tab. A in the appendix. For this fixed configuration
of nuclei, we now compare the instantaneous pressure as
a function of electronic temperature. The fact that the
nuclei are now classical rather being represented by paths
in PIMC has a negligible effect on the pressure for the
temperatures under consideration. In both methods, the
instantaneous pressure is a well-defined quantity derived
from the virial theorem. In PIMC, the pressure is derived
directly from the kinetic, 〈K〉, and potential, 〈V〉, energy,

3PV = 2 〈K〉 + 〈V〉 , (5)

where V is the volume of the simulation cell. In DFT, one
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FIG. 4: Comparison of the instantaneous pressure for a fixed
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thermally populated states. The upper panel included results
from PIMC with variational nodes. The lower panel compares
PIMC results with free-particle nodes for different densities.
(The ideal gas contributions from the nuclei are not included.)

uses the diagonal elements of the stress tensor52. For a
fixed configuration of nuclei, the temperature dependence
of the instantaneous pressure arise from changes in the
thermal population of Kohn-Sham orbitals.

Figure 4 compares the instantaneous pressures from
both methods. At intermediate temperatures, there is a
large interval where both methods agree. DFT pressures
appear to be fairly accurate. For the level of accuracy
needed for this study we could not detect any insuffi-
ciency resulting from the groundstate exchange correla-
tion functional nor from inaccurate thermal excitations
resulting from an underestimated band gap. However,
the DFT eventually becomes prohibitively expensive at
higher temperature. Some of the points at rs = 2.4 re-
quired up to 100 bands per atom, and that is one reason
why we only used a single configuration. The other comes
from path integrals. PIMC simulations with 123 atoms,
shown in Fig. 1, represent about the limit one can study
with currently available computers. To repeat the calcu-
lations at lower temperature where the paths are longer,
or to use the more expensive variational nodes, would
quickly exceed existing limits in processing power.
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FIG. 5: Pressure-temperature diagram that indicates the con-
ditions where PIMC (circles) and DFT-MD (squares) simula-
tions have been performed. The lines show isochores for the
following rs parameters: 2.4, 2.0, 1.75, 1.5, 1.25, and 1.0. The
triangles indicate conditions where the Debye model has been
used.

Figure 4 also reveals inaccuracies in the PIMC com-
putation that are caused by approximations in the trial
density matrix. PIMC with free-particle nodes predict
pressures that are too high when the electrons settle into
the ground state (T ≤ 40 000 K for rs=1.86 as shown in
Fig. 2). This effect has already been reported for hy-
drogen15. In the variational density matrix approach37

one allows the trial density matrix to adjust to the po-
sitions of the nuclei, which corrects most of the pressure
error as can be seen in upper panel of Fig. 4. However,
the variational approach was derived to study finite tem-
perature problems. It does not describe the electronic
ground state as well as DFT.

For the purpose of constructing one EOS table for he-
lium, we use our DFT-MD results with Tel = Tion up
to 80 000 K for rs ≥ 1.5 and results up to 125 000 K for
rs = 1.25 and 1.0. For all higher T , we use PIMC sim-
ulations, which become increasingly efficient at higher T
because the length of the paths is inversely proportional
to temperature. The temperature-pressure conditions of
DFT-MD and PIMC simulations are shown in Fig. 5.

It should noted that the discussed validity range of dif-
ferent trial density matrices depends very much on the
material under consideration. The temperature where
we switch from PIMC to DFT-MD reflects the degree
of thermal electronic excitations as well as some depen-
dence of the approximations made in each methods. The
density dependence of the switching temperature would
typically be estimated by comparing the temperature to
the Fermi energy of an ideal gas of electrons. However,
to incorporate band structure effects of dense helium, we
found it more appropriate to relate the switching temper-
ature to the DFT band width. Band width and Fermi
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energy are identical in systems of noninteracting parti-
cles. For the purpose of this study, we found it appropri-
ate to switch from PIMC to DFT-MD for temperatures
corresponding to less than one third of the helium band
width.

We performed PIMC simulations up to 1.28 × 108 K
covering a large temperature interval of two orders of
magnitude. At low temperature, the excess internal en-
ergies and pressures in Figs. 2, 3, and 6 are positive be-
cause of thermal electronic excitations, but then change
sign due to interactions of ions and free electrons. At
very high temperature when helium is fully ionized, the
system can be described by the Debye plasma model53.
The Debye model is based on a self-consistent solution
of the Poisson equation for a system of screened charges.
The excess contribution to the free energy, internal en-
ergy, entropy per particle, and pressure are given by,

F

Np
=

Ξ

12
,

E

Np
=

Ξ

8
,

S

Np
=

Ξ

24
, P =

Ξ

24V
, (6)

Ξ = −kBTV
κ3

π
, κ2 =

4π

kBT

∑

i

Z2
i

Ni

V
, (7)

where κ = 1/rd is the inverse of Debye radius, rd, in a
collection of Ni particles of charge Zi in volume V where
Np =

∑

i Ni. Figure 6 demonstrate very good agreement
with the Debye model at high temperature. The De-
bye model fails at lower temperatures where it predicts
unphysically low pressures. Under these conditions the
screening approximation fails because there are too few
particles in the Debye sphere. The number of particles
in the Debye sphere is proportional to,

(rd/rs)
3 ∼ (T rs)

3/2 , (8)

which means that the Debye model becomes increasingly
accurate for high T and large rs. This is exactly what
is observed in Fig. 6. For higher densities, PIMC and
Debye predictions converge only at higher temperatures.

The size of the Debye sphere increases with temper-
ature and will eventually exceed the size of any simula-
tion cell. This occurs when the coupling of the particles
becomes very weak. With increasing temperature, the
Coulomb energy decreases while the kinetic energy in-
creases linearly with T . Determining the precise amount
of the Coulomb energy becomes increasingly difficult due
to finite size effects. The finite size extrapolation only
corrects for the leading term in an expansion in 1/N .
In the weak coupling limit, bigger and bigger simulation
cells are needed to perform the extrapolation accurately.
Instead of using simulations, it is much more efficient to
switch to analytical methods like the hypernetted chain
integral equations54 or the Debye model.

In conclusion, finite size effects are the reason why the
PIMC energies do not agree perfectly with the Debye
model for the highest temperature shown in the lower
panel of Fig. 3. The excess pressures reported in Fig. 6
are less sensitive to finite size errors than the internal en-
ergy because their volume dependence is relatively weak.
We consequently use the Debye EOS for the highest tem-
peratures in our EOS given in Tab. I. The pressure-
temperature conditions for DFT-MD, PIMC, and Debye
results are summarized in Fig. 5.

IV. COMPARISON WITH FREE ENERGY

MODELS

Now we compare our first-principles EOS with chem-
ical free energy models that were developed before first-
principles simulation data became available. Winisdoerf-
fer and Chabrier55 constructed a semianalytical model
to study stellar interiors that covers a wide density range
including metallization. Their EOS is only available in
explicit form in a small temperature interval, and a com-
parison with DFT-MD simulation has already been re-
ported22. That is why we focus on three other free en-
ergy models: the first derived by Saumon, Chabrier, and
van Horn (SCvH)56, another by Chen et al.

57, and one
model by Förster, Kahlbaum and Ebeling58.

The SCvH EOS for helium combined with their hydro-
gen EOS59 has been used numerous times to model giant
planet interiors. Figure 7 compares the excess pressure
for three different temperatures. At a high temperature
of 106K, which is important for stellar interiors, we found
fairly good agreement. The deviations between the SCvH
model and PIMC simulations are only about 4%.

At a intermediate temperature of 100 000 K, which ap-
proximately represents the regime of shock wave experi-
ments, the agreement is less favorable. The SCvH EOS
reports pressures that are about 30% lower than those
predicted by PIMC. This is partly due to the fact that
the SCvH model follows the Debye model down to too
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FIG. 7: Comparison of the relative excess pressure reported
by first-principles simulations with the SCvH EOS model.
The three temperatures shown here are relevant for stellar
interiors, the comparison with shock wave experiments, and
the interiors of giant planets.

low temperatures (Fig. 3). Furthermore, the authors of
the SCvH EOS relied on an interpolation scheme between
low and high temperature expressions to construct their
helium EOS. At intermediate temperatures the resulting
EOS is not thermodynamically consistent. The authors
reported the region of inconsistency in their article56 and
we added it to Fig. 17.

The last panel in Fig. 7 is relevant to the interiors
of giant planets with temperature of order 10 000 K. At
low density both EOSs agree well, but above 1.5 g cm−3

deviation begin to increase steadily. At conditions com-
parable to Jupiter’s interior, we find that the SCvH un-
derestimates the pressure by 30%. In a hydrogen-helium
mixture of solar composition, this translates into an er-
ror in the pressure of about 4%. This is the reason why
even the helium EOS is important for estimating the size
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FIG. 8: EOS comparison with the free energy model by Chen
et al.57 for two temperatures of 4 and 6 eV.

of Jupiter’s core, which is expected to be only a small
fraction of Jupiter’s total mass25,26,60.

Figure 8 compare the pressures with the free energy
model derived by Chen et al.

57. For the conditions of
ρ < 2 g cm−3 and 4 eV < T < 6 eV, the agreement
with the first-principles EOS reported here is reasonably
good. The deviations are of order 10%. However, one
motivation of the Chen et al. work was the consideration
of a density and temperature dependent correction to the
ionization energy. Figure 8 shows that the deviation from
the first-principles EOS increases when this correction
is applied. Since the assumption of a lowering of the
ionization energy with density is very reasonable, one
expects the reason for the discrepancy to be caused by
one of the many other approximations in this chemical
model.

In 1992, Förster, Kahlbaum, and Ebeling (FKE) de-
rived a chemical model for dense helium that exhibits
two first-order phase transitions associated with the ion-
ization steps He → He+ → He2+ at high density and low
temperature. The authors were careful to point out that
there is no final proof for the existence of such plasma
phase transitions in helium but constructed their model
so that possible consequences in astrophysics could be ex-
plored. Figure 9 compares the FKE model with the first-
principles EOS reported here. Both phase transitions
were predicted to occur in a temperature and density re-
gion where the first-principles EOS is perfectly smooth
and no evidence of a sharp ionization transition can be
found. Good agreement with the FKE EOS is observed
for low density and high temperature where chemical
models work well. Also at very high density outside the
region of the predicted phase transitions, the agreement
is very reasonable.
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V. PAIR CORRELATION FUNCTIONS

In this section, we study the structure of the fluid by
analyzing correlations between different types of parti-
cles. Given the large amount of simulation results, we
focus our attention primarily on the temperature depen-
dence and only report results for one density of rs = 1.86.
The density dependence of the pair correlation functions,
g(r), has been analyzed in Ref.48 for hydrogen and in
Ref.61 for helium.

Figure 10 shows how the nuclear pair correlation func-
tions changes over a temperature interval that spans
seven orders of magnitude. At low temperature, the g(r)
shows the oscillatory behavior that is typical for a hard-
sphere fluid. The atomic interactions are governed by
two tightly bound electrons that lead to a strong repul-
sion at close range due to Pauli exclusion. As long as the
density is not too high, this behavior is well-described by
the Aziz pair potential20.

As temperature increases, two effects change the pair
correlation function. First, the increase in kinetic en-
ergy leads to stronger collisions, and atoms approach each
other more. In this regard, helium does not exactly repre-
sent a hard-sphere fluid because the Aziz pair potential is
not perfectly hard. Second, the increase in temperature
also damps of the oscillation in the g(r).

At 80 000 K, one finds perfect agreement between
PIMC and DFT-MD (upper panel in Fig. 10). As the
temperature is increased further, changes in the nuclear
g(r) functions are dominated by thermal electronic exci-
tations and the ionization of atoms. One finds that the
strong repulsion at low temperature disappears gradu-
ally. As the Debye-Hückel limit is approached, the fluid
behaves like a correlated system of screened Coulomb
charges.
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FIG. 10: The nuclear pair correlation functions for rs = 1.86.
The lower panel shows the following temperatures: { 128, 64,
32, 16, 8, 4, 2, 1, 0.5, and 0.125 } ×106 K from PIMC as well
as { 40, 20, 10, 5, 3, and 1 } ×103 K from DFT-MD.
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FIG. 11: The electron-nucleus pair correlation functions, g(r),
from PIMC for rs = 1.86. Starting with the highest peak, the
following temperatures are plotted: { 0.04, 0.08, 0.125, 0.25,
0.333, 0.5, 0.8, 1, 2, 4, and 128 } ×106 K. We plot r ∗ g(r) on
the ordinate so that the peak at small r illustrates the fraction
of electrons in bound states. The decrease in peak height
with increasing temperature demonstrates thermal excitation
of electrons, which eventually leads the ionization of atoms.
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FIG. 12: The electron-electron pair correlation functions for
electrons with parallel spins calculated with PIMC for rs =
1.86. Starting from the left, the following temperatures are
plotted: { 32, 16, 8, 4, 2, 1, 0.25, 0.125, 0.08, 0.0625, 0.04 }
×106 K. With increasing temperature, correlation effects are
reduced and the exchange-correlation hole disappears.

The peak in the electron-nucleus pair correlation func-
tions in Fig. 11 illustrates that the electrons are bound
to the nuclei. At 40 000 K and below, the peak height is
maximal. At higher temperature, electrons get excited
thermally and eventually atoms become ionized. The
peak height is consequently reduced until, at very high
temperature, the motion of electrons and nuclei becomes
uncorrelated.

The correlation of electrons with parallel spins is de-
termined by Pauli exclusion and Coulomb repulsion but
is also influenced by the motion of the nuclei at low tem-
perature. Combination of all these effects causes the mo-
tion of same-spin electrons to be negatively correlated
at small distances. This is typically referred to as the
exchange-correlation hole. At high temperatures, kinetic
effects reduce the size of this hole but g(r) always goes
to zero for small r due to Pauli exclusion.

Despite the Coulomb repulsion, the electrons with op-
posite spins are positively correlated at low temperature,
because two electrons with opposite spin are bound in
a helium atom. With increasing temperature, the peak
in Fig. 13 reduces in height because more and more elec-
trons get ionized. At 106 K, one finds the lowest values for
g(r → 0) because the electrons are anti-correlated due to
the Coulomb repulsion. If the temperature is increased
further, kinetic effects dominate over the Coulomb re-
pulsion and g(r → 0) again increases and will eventually
approaches 1 at high temperature.

0 1 2
r (aB)

0

1

2

3

4

5

6

7

g(
r)

 

10
6
K 1.28x10

8
K

40000 K

FIG. 13: The electron-electron pair correlation functions for
electrons with opposite spins calculated with PIMC for rs =
1.86. Starting from the top, the following temperatures are
plotted: { 0.04, 0.0625, 0.08, 0.125, 128, and 1 } ×106 K. The
smallest values are observed for 106 K.

VI. ELECTRONIC DENSITY OF STATES

In this section, we illustrate the importance of thermal
electronic excitation by analyzing the electronic density
of states (DOS) derived from DFT-MD22,24. Figure 14
compares the total available DOS as well as the ther-
mally occupied fraction for rs = 1.0, 1.86, and 2.2 and
T=80 000 , 20 000, and 5 000 K. The results were obtained
by averaging over 10 snapshots equally spaced from corre-
sponding DFT-MD trajectories. The eigenvalues of each
snapshot were shifted so that the Fermi energies align at
zero. A 4x4x4 k-point grid was used for rs = 1.0 and
1.86, and a 2x2x2 grid for rs=2.2. To reduce the remain-
ing noise level, a Gaussian smearing of 1 eV was applied
to the rs = 2.2 and 1.86 results; 2 eV was used for rs=1.0.
The curves are normalized such that the occupied DOS
integrates to 1.

The electronic DOS at rs = 2.2 and 1.86 are qualita-
tively similar. The occupied DOS has one large peak
at approximately −10 eV, followed by a wide gap at
the Fermi energy, followed by a continuous spectrum of
conducting states. At 5000 K, thermal electronic excita-
tions are not important. At 20 000 K, a small but non-
negligible fraction of the electrons are excited across the
gap, which is illustrated in the inset in the middle panel
of Fig. 14. These excitations increase the pressure shown
in Fig. 2 and increase the compression ratio in shock
wave experiments that will be discussed later. At 80 000
K the system still exhibits a gap but a large fraction of
the electrons now occupy excited states. The increase in
temperature also lead to stronger collisions of the atoms,
which broadens the peak of the unoccupied DOS and
spreads the levels in the unoccupied DOS further, which
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FIG. 14: The three panels show the electronic density of states
(DOS) at the densities rs = 1.0, 1.86, and 2.2. The open
and filled circles, respectively, show th density of all available
states and the thermally occupied fraction at 80 000 K. The
diamonds and the thick lines without symbols show total DOS
at 20 000 and 5 000 K, respectively. The occupied DOS at
20 000 K (this solid line) is only shown for rs = 1.0 and in the
inset for rs = 1.86. The eigenvalues from each configuration
were shifted so that all Fermi energies (vertical dashed line)
align at zero.

reduces the magnitude DOS.

At rs=1.0 the character of the DOS is different from
lower densities. At 5000 K, the system still exhibits a gap,
but it is much narrower. Occupied and unoccupied states
are piled up around it. The band width of the occupied
states has increased substantially24. If temperature is
increased at this density, the band gap closes as a result of
the collision induced broadening. Fluid helium assumes
a metallic state that has been studied in more detail in
Refs.22,24.
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FIG. 15: Comparison in temperature-density space of adi-
abats from first-principles simulations (this work) and the
SCvH EOS model.

VII. ENTROPY CALCULATIONS

Convection in the interior of planets requires that
the temperature-pressure profile is adiabatic. In con-
sequence, the planetary interior is fully determined by
the conditions on the surface and the EOS. This makes
the calculation of adiabats important. However, neither
Monte Carlo nor molecular dynamics methods can di-
rectly compute entropies because both techniques save
orders of magnitude in computer time by generating only
a representative sample of configurations. Without this
gain in efficiency, many-body simulations would be im-
possible. In consequence, entropies that are measures of
the total available phase space are not accessible directly.

Typically one derives the entropy by thermodynamic
integration from a know reference state. However, for
planetary interiors, the absolute value of the entropy is
not important as long as one is able to construct (T, P )
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FIG. 16: Comparison in temperature-pressure space of the
adiabats shown in Fig. 15.

curves of constant entropy. This can be done using the
pressure and the internal energy from first-principles sim-
ulations at different (T, V ) conditions. Using Maxwell’s
relations, one finds,

∂T

∂V

∣

∣

∣

∣

S

= −
∂S
∂V

∣

∣

T
∂S
∂T

∣

∣

V

= −T
∂P
∂T

∣

∣

V
∂E
∂T

∣

∣

V

. (9)

By solving this ordinary differential equation, (V,T)-
adiabats can be constructed as along as a sufficiently
dense mesh of high-quality EOS points are available to
make the required interpolation and differentiation of E
and P with respect to temperature satisfactorily accu-
rate.

One drawback of formula (9) is that it is not necessarily
thermodynamically consistent if pressures and internal
energies are interpolated separately. This is the primary
reason why we developed the following method to fit the
free energy instead. Pressure and internal energy are

related to the free energy, F (V, T ), by

P = −
∂F

∂V

∣

∣

∣

∣

T

and E = F − T
∂F

∂T

∣

∣

∣

∣

V

. (10)

Different EOS fits for fluids have been proposed in the
literature47,62. Thermodynamic consistency was not a
priority in either case. Both papers relied on specific
functional forms that were carefully adjusted to the ma-
terial under consideration. Although such a fit of specific
form could probably have also been constructed for the
presented helium EOS data, we wanted to have an ap-
proach that is not just applicable to one material. There-
fore, we decided to represent the free energy as a bi-cubic
spline function with temperature and density as param-
eters. This spline function can accurately represent our
helium EOS data and can easily be adapted to fit other
materials. Cubic splines are twice continuously differ-
entiable, which means the derived pressures and energies
are once continuously differentiable with respect to V and
T . This is sufficient for this study. If additional thermo-
dynamic functions that require higher order derivatives
of the free energy, such as sound speeds, need to be fit
also, then higher order splines can accommodate that.

We start the free energy interpolation by construct-
ing a series of one-dimensional spline functions Fn(T ) for
different densities. The choice of knots Ti is arbitrary.
Their location should be correlated with the complex-
ity of the EOS as well as the distribution of EOS data
points. In our helium example, we used a logarithmic
grid in temperature with about half as many knots as
data points. The set of free energy values on the knots,
F (Ti), represent the majority of the set of fit parameters.
In addition, one may also include the first derivatives of
the splines ∂Fn

∂T |V at the lowest and highest temperatures,
which represent the entropy. Alternatively, one could de-
rive those derivatives by other means and then keep them
fixed during the fitting procedure.

To compute the free energy at a specific density, n∗,
and temperature, T ∗, we first evaluate all splines Fn(T ∗)
and then construct a secondary spline at constant tem-
perature as a function of density, FT∗(n). Its first
derivate is related to the pressure. Again, the derivative
at the interval boundaries can either be fixed or adjusted
during the fitting procedure. We adjust them by intro-
ducing an additional spline ∂F

∂n |T (T ) at the lowest and
highest densities, which then get adjusted in the fitting
procedure.

We begin the fitting procedure with an initial guess
for the free energy function derived from Eq. (9). Then
we employ conjugate gradient methods63 to optimize the
whole set of fitting parameters. Minimizing the sum of
the squared relative deviations in pressure and internal
energy has been found to work best. (Just for the deriva-
tion of the relative deviation in energy, the zero of energy
has been shifted to the value of the isolated helium atom.)

All fits tend to introduce wiggles if too many free pa-
rameters are included. We control wiggles by adjusting
the number of knots in density and temperature but we
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also introduce penalty in the form,

ξ =

∫

dρ

(

∂3F

∂n3

)2

, (11)

to favor fits with smaller |∂2P/∂n2|. Finally we change
the density argument in the spline interpolation from
FT (ρ) to FT (log(ρ)). This improves the fit in the high
temperature limit where the free energy is dominated by
the ideal gas term that has logarithmic dependence on
density.

The presented free energy fit is thermodynamically
consistent by construction. It allows us to accurately
represent the entire data set of P and E values. Without
additional information, the free energy can be determined
up to a term T∆S, which is sufficient to compute adia-
bats. To determine the absolute value of the entropy, one
needs an anchor point, for which the entropy was derived
by different means.

Figure 15 compares different adiabats derived from our
first-principles EOS with predictions from the SCvH EOS
model. Beginning from a joint starting point of rs = 2.4
and a selection of seven different temperatures of 3000,
5000, 10 000, 50 000, 100 000, 500 000, and 106 K, we con-
structed the adiabats for both models for the density in-
terval under consideration. The upper panel of Fig. 15
demonstrates good agreement between both methods at
low densities up to about 1 g cm−3. For higher densities,
one finds deviations of up to 20% in the predicted tem-
peratures on the adiabats. A higher temperature, the
agreement get substantially better, which is illustrated
in the lower panel of Fig. 15. The observed deviations
are similar to pressure differences shown in Fig. 7.

For applications in the field of planetary science, we
also show the adiabats in (T ,P ) space in Fig. 16. The de-
viations are comparable in magnitude but appear smaller
on a logarithmic scale.

VIII. SHOCK WAVE EXPERIMENTS

Dynamic shock compression experiments are the pre-
ferred laboratory experiments to probe the properties of
materials at high pressure and temperature. Lasers21,
magnetic fields11, and explosives64 have recently been
used to generate shock waves that reached megabar pres-
sures. Under shock compression, the initial state of a
material characterized by internal energy, pressure, and
volume (E0, P0, V0) changes to the final state described
by (E, P, V ). The conservation of mass, momentum, and
energy yields the Hugoniot condition65,

H = (E − E0) +
1

2
(P + P0)(V − V0) = 0. (12)

Different shock velocities lead to a collection of final
states that are described by a Hugoniot curve. Using
Eq. 12, this curve can easily be calculated for a given EOS
where one most often may assume P0 ≪ P . V0 = 32.4
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at ambient pressures (ρ0 = 0.1235 g cm−3, Ref.19). The sym-
bols approximately represent recent experiments21. The in-
side of the dashed box indicates conditions, for which the
SCvH EOS56 was interpolated and is not thermodynamically
consistent.
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FIG. 18: Hugoniot curves for different precompression ratios
from Fig. 17 plotted as function of shock compression.

cm3/mol (ρ0 = 0.1235 g cm−3) is taken from experi-
ment19. For E0, one takes the energy of an isolated he-
lium atom, which must be calculated consistently with
the final internal energy, E. An initial static precom-
pression that changes V0 will also affect E0 and P0 but
the corrections are negligible as long as the amount of
initial compression work is small compared to the energy
that is deposited dynamically. Assuming dE0 = dP0 = 0,



15

0.1 1 10
Density (g cm

−3
)

10
1

10
2

10
3

10
4

10
5

10
6

P
re

ss
ur

e 
(G

P
a)

2015108643211/2
1/4

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Density (g cm
−3

)

50

100

150

200

P
re

ss
ur

e 
(G

P
a)

1.0
5/3
2.4
3.4

FIG. 19: Pressure-density plot of shock Hugoniot curves for
different precompression ratios. The upper panel shows the
shock Hugoniot curves from Fig. 18, recent experimental re-
sults (symbols), and the range of the lower plot. Below we
plot the Hugoniot curves for precompression ratios (see la-
bels) that approximately match the experimental conditions
(symbols, see Ref.21). The error bar on the upper left solid
line represents the uncertainty in the calculations.

the total differential of H reads,

dH = dE +
P

2
dV −

P

2
dV0 +

1

2
(V − V0)dP (13)

The point of maximum compression, ηmax = V0/V ,
along the Hugoniot curve can be derived by setting,
dH = dV = dV0 = 0. The resulting condition can
be expressed in terms of the Grüneisen parameter, γ ≡
V ∂P

∂E

∣

∣

V
= 2/(ηmax − 1).

Now we will determine how the maximum compres-
sion ratio, ηmax, changes if the sample is precompressed
statically. Keeping the final shock pressure constant, the
compression ratio changes as function of the initial sam-

ple volume, V0,

∂η

∂V0

∣

∣

∣

∣

P

=
1

V
−

V0

V 2

∂V

∂V0

∣

∣

∣

∣

P

. (14)

Setting dH = dP = 0 in Eq. 13, one finds,

∂V0

∂V

∣

∣

∣

∣

P

=
2

P

∂E

∂V

∣

∣

∣

∣

P

+ 1 ≡
2

δ
+ 1 . (15)

Inserting this result into Eq. 14 yields,

V
∂ηmax

∂V0

∣

∣

∣

∣

P

=
2(γ − δ)

γ(2 + δ)
. (16)

Since the parameters γ and δ are both positive, the re-

lation, ∂ηmax

∂V0

∣

∣

∣

P
> 0, is equivalent to the relation, δ < γ,

which is again equivalent to,

1 <
ρ

P

∂P

∂ρ

∣

∣

∣

∣

E

. (17)

If this condition is fulfilled for a particular EOS then
the maximum shock compression ratio will decrease if
the sample is precompressed statically, which reduces V0.
We have computed the isoenergetic compressibility for
our first-principles EOSs for helium and hydrogen and
verified that this condition is satisfied for both materials
(Fig. 18). It is also fulfilled for an ideal plasma model
because the maximum compression ratio is determined
by the balance of excitations of internal degrees of free-
dom and interaction effects20. Although all interactions
are neglected, an ideal model correctly represents the fact
that excited states are suppressed at high density because
of the reduced entropy. The diminished importance of
excitations reduces the maximum compression ratio to
values closer to 4, which is the expected result for non-
interacting systems without internal degrees of freedom.

Recent laser shock wave experiments21 reached pres-
sures of 2 megabars in fluid helium for the first time.
The sample was precompressed statically in a modified
diamond anvil cell before the shock was launched. The
static precompression is an important development that
enables one to reach higher densities and still allows one
to directly determine the EOS. Reaching higher densi-
ties is important for planetary interiors because shock
Hugoniot curves rise faster than adiabats in a P -T di-
agram like that shown in Fig. 17. As a result, a large
part of Jupiter’s adiabat remains inaccessible unless one
increases the starting density by precompression. The
precompression and relation of planetary interiors was
studied theoretically in Ref.66. It was demonstrated that
precompression of up to 60 GPa would be needed to
characterize 50% of Jupiter’s envelope. The challenge
here is to reach high enough densities because a single
shock wave compresses the material only 5.25-fold or less
(Fig. 18).

The measurements of J. Eggert et al.
21 confirmed two

of our theoretical predictions20. They showed that he-
lium has a shock compression ratio substantially larger



16

than 4 due to thermal electronic excitations and that
the compression ratio would decrease with increasing pre-
compression (Fig. 18).

Figure 19 shows a detailed comparison between exper-
iments and our first-principles simulations. The shock
measurements without precompression show a higher
compression than predicted from first principles. The
deviations are outside the experimental and theoretical
error bars. However, this discrepancy goes away with
increasing precompression. The shocks with 3.4-fold pre-
compression are in good agreement with first-principles
predictions. We have no explanation for this trend at
present. More experimental and theoretical work will be
needed to reveal the reason for this discrepancy. Using
our first-principles EOS, we converted the reported P -ρ
measurements to temperature (see Fig. 17). Since the
resulting shock temperatures span the interval of 24 000
– 63 000 K, the comparison with our EOS rests on DFT-
MD.

In this temperature interval, the SCvH EOS predicts
significantly lower pressures than our first-principles EOS
(see Fig. 7). Consequently, this model predicts a higher
compressibility for shock Hugoniot curves with and with-
out precompression. As a result, the SCvH model agrees
better than our first-principles calculations with those
shock measurements that did not use any precompres-
sion. However, SCvH model is not in agreement with
shock measurements that used precompressions more
than 2-fold21. For those, it predicts a compressibility
that is higher than measured.

Furthermore, it turns out that all measurements fall
into the region where thermodynamic inconsistencies in
the SCvH EOS model are large (see Fig. 17) and the
model is expected to be less reliable than elsewhere. A

different chemical model based on an expansion of the
activity67 predicts maximum compression ratios between
5.6 and 6.2 to occur at about 100 GPa, which is in
good agreement with shock measurements without pre-
compression.

IX. CONCLUSIONS

This work combined path integral Monte Carlo and
density functional molecular dynamics simulations to de-
rive one coherent equation of state for fluid helium at high
pressure and temperature. Helium is a comparatively
simple material since it does not form chemical bonds
nor has core electrons, but our approach of combining
two simulation techniques can be generalized to study
more complex materials at extreme conditions. Certainly
the presented approach to fitting the free energy and to
deriving adiabats works for any set of EOS data points
derived from first-principles simulations.

For the future, one might consider replacing DFT-MD
with coupled ion-electron Monte Carlo68. However this
is strictly a groundstate method and one would still need
to find a way to include thermal electronic excitations.
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41 P. E. Blöchl. Phys. Rev. B, 50:17953, 1994.
42 J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev.

Lett., 77:3865, 1996.
43 N. D. Mermin. Phys. Rev., 137:A1441, 1965.
44 R.A. Aziz, A.R. Janzen, and M. R. Moldover. Phys. Rev.

Lett., 74:1586, 1995.
45 E. L. Pollock and B. Militzer. Phys. Rev. Lett., 92:021101,

2004.
46 B. Militzer and E. L. Pollock. Phys. Rev. B, 71:134303,

2005.
47 G. S. Stringfellow, H. E. DeWitt, and W. L. Slattery. Phys.

Rev. A, 41:1105, 1990.
48 B. Militzer and D. M. Ceperley. Phys. Rev. E, 63:066404,

2001.
49 E. A. Hylleraas. Z. Phys., 54:347, 1929.
50 A. A. Bürgers, D. Wintgen, and J.-M. Rost. J. Phys. B,

28:3163, 1995.
51 G. Tanner, K. Richter, and J.-M. Rost. Rev. Mod. Phys.,

72:497, 2008.
52 O. H. Nielsen and R. M. Martin. Phys. Rev. B, 32:3780,

1985.
53 P. Debye and E. Hückel. Phys. Z., 24:185, 1923.
54 L. D. Landau and E. M. Lifshitz. Statistical Physics. Perg-

amon Press New York, 1969.
55 C. Winisdoerffer and G. Chabrier. Phys. Rev. E,

71:026402, 2005.
56 D. Saumon, G. Chabrier, and H. M. Van Horn. Astrophys.

J. Suppl., 99:713, 1995.
57 Q. Chen, Y. Zheng, L. Cai, Y. Gu, and F. Jing. Phys.

Plasmas, 14:012703, 2007.
58 A. Förster, T. Kahlbaum, and W. Ebeling. Laser Part.

Beams, 10:253, 1992.
59 D. Saumon and G. Chabrier. Phys. Rev. A, 46:2084, 1992.
60 B. Militzer and W. H. Hubbard. in press Astrophys. and

Space Sci., arXiv astro-ph/0807.4266, 2008.
61 B. Militzer. J. Phys. A, in press, 2008, cond-mat:

0902.4281.
62 T. J. Lenosky, S. R. Bickham, J. D. Kress, and L. A.

Collins. Phys. Rev. B, 61:1, 2000.
63 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes in C++. Cambridge Univer-
sity Press, Cambridge, UK, 2001.

64 V. E. Fortov, R. I. Ilkaev, V. A. Arinin, V. V. Burtzev,
V. A. Golubev, I. L. Iosilevskiy, V. V. Khrustalev, A. L.
Mikhailov, M. A. Mochalov, V. Ya. Ternovoi, and M. V.
Zhernokletov. Phys. Rev. Lett., 99:185001, 2007.

65 Y. B. Zeldovich and Y. P. Raizer. Academic Press, New
York, 1966.

66 B. Militzer and W. B. Hubbard. AIP Conf. Proc.,
955:1395, 2007.

67 M. Ross, F. Rogers, N. Winter, and G. Collins. Phys. Rev.
B, 76:020502(R), 2007.

68 K. T. Delaney, C. Pierleoni, and D. M. Ceperley. Phys.
Rev. Lett., 97:235702, 2006.

Appendix A: Free energy spline interpolation

We constructed the following 2D spline interpolation
of the free energy in order to reproduce the internal en-
ergy and pressures from Tab. I. We use atomic units
of Hartrees and Bohr radii. For each density of rs =
{2.4, 2.0, 1.6, 1.2, 0.8}, we construct a cubic spline Fn(T ).
Table VI lists 16 knot points (Ti, F (Ti)) for each den-
sity. In addition, the first derivate ∂F

∂T are specified at
the lowest and highest temperatures. This is sufficient to
construct a cubic spline function F (T )63.

In a similar fashion, we derive a spline function that
contains that free energy derivative with respect to den-
sity, ∂F

∂n (T ), at the lowest and highest densities, rs = 2.4
and 0.8 respectively. n is the density of the electrons,
n = Ne/V . Those knot points as well as the T deriva-
tives are included in Tab. VI also.

In order to obtain the free energy for a particular
density and temperature, (n∗, T ∗), we proceed as fol-
lows. First we evaluate the spline functions F (T ∗) and
∂F
∂n (T ∗) at temperature T ∗. Using these five knots points
and density derivatives, we construct a spline function,
F (log(n)). We use log(n) as argument because it better
represents the high-temperature limit of weak interac-
tions. Note that the constructed splines for the density
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derivate contain ∂F
∂n and not ∂F

∂ log(n) . Then F (log(n)) is

evaluated at the density of interest, n∗. Finally we add
the term, −T∆S = −13.7902836 Ha*T , which brings
the entropy in agreement with our Debye-Hückel refer-
ence point at high temperature for rs=1.86. This pro-

cedure yields the free energy F (n∗, T ∗) in Hartrees per
electron. Other thermodynamic variables including pres-
sure, internal energy, entropy, and Gibbs free energy can
be obtained by differentiation.
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TABLE VI: Knot points for free energy spline interpolation

T (a.u.) f(rs = 2.4, T ) f(rs = 2.0, T ) f(rs = 1.6, T ) f(rs = 1.2, T ) f(rs = 0.8, T )
0.001583407607 -1.433567121 -1.431135811 -1.422237604 -1.377317056 -1.089747214
0.004369348882 -1.406243368 -1.402248169 -1.390358674 -1.34121764 -1.049220122
0.01205704051 -1.338444742 -1.330719999 -1.313137294 -1.255091313 -0.9491949603
0.03327091284 -1.169814789 -1.154154406 -1.125146478 -1.047701304 -0.7135001905
0.09180973061 -0.7578793569 -0.7214892496 -0.6653645937 -0.5501514183 -0.1583196636
0.2533452171 0.1213432393 0.2279596473 0.3697481593 0.5961317377 1.145222958
0.6990958211 1.448161918 1.849742465 2.331720062 2.967152398 4.011622282
1.929126481 1.650153009 3.082886945 4.795803813 6.956651264 9.947352284
5.323346054 -6.480107758 -2.223161966 2.964697691 9.579180258 18.74636894
14.6895569 -50.37972679 -38.41515844 -23.79211621 -4.992619324 21.39894481
40.53523473 -231.4313924 -198.2806566 -157.6765535 -105.3657984 -31.61456362
111.8553314 -893.7314032 -802.1449141 -689.7861073 -544.9061891 -340.7935545
308.660237 -3172.519712 -2918.919455 -2608.696846 -2207.77895 -1644.63782
851.7353686 -10693.37579 -9996.590015 -9137.681211 -8032.176108 -6477.239292
2350.329104 -34893.6373 -32971.41578 -30600.55572 -27552.36594 -23259.81241
6485.637557 -111050.5942 -105746.9466 -99203.62441 -90788.1102 -78945.99564
f ′(rs, T1) 10.43646526 10.93007841 12.42958105 14.04097874 13.75171132
f ′(rs, TN ) -19.3620206 -18.54727965 -17.53417624 -16.23883073 -14.41224513

T (a.u.) ∂f

∂n
(rs = 2.4, T ) ∂f

∂n
(rs = 0.8, T )

0.001583407607 0.1605721538 0.9460950728
0.004369348882 0.2923651353 0.9625433841
0.01205704051 0.6458549976 0.9782855175
0.03327091284 1.463747273 1.029890765
0.09180973061 3.574255133 1.142591093
0.2533452171 10.98479122 1.409424435
0.6990958211 43.27443042 2.089943658
1.929126481 153.211445 5.309130852
5.323346054 450.4159975 15.9843674
14.6895569 1263.720981 46.33079487
40.53523473 3502.359609 129.8984992
111.8553314 9679.619949 359.8256334
308.660237 26719.83852 992.5003633
851.7353686 73736.1465 2741.461026
2350.329104 203474.5198 7568.332998
6485.637557 561480.8894 20879.15481
f ′(rs, T1) 47.35562925 6.453623893
f ′(rs, TN) 86.57538487 3.218499127
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TABLE VII: Reduced coordinates of the DFT-MD configu-
ration with 57 atoms that was used to report the rs = 1.86
results for the instantaneous pressure in Fig. 4. The cell size
is L = 14.5382 a.u.

x/L y/L z/L x/L y/L z/L
0.749029 0.334272 0.723992, 0.359050 0.631169 0.090795
0.636183 0.917961 0.531890, 0.500277 0.715818 0.420142
0.509121 0.642554 0.328933, 0.192192 0.222632 0.042651
0.273631 0.845722 0.363632, 0.070837 0.830223 0.693497
0.053785 0.837401 0.054990, 0.138489 0.091713 0.097622
0.250609 0.517490 0.740851, 0.953625 0.430789 0.067921
0.107008 0.407958 0.463387, 0.023708 0.960709 0.487179
0.988548 0.830572 0.241931, 0.811738 0.062550 0.902069
0.244399 0.482412 0.399190, 0.693258 0.647174 0.360832
0.924284 0.678572 0.470508, 0.181701 0.886709 0.333868
0.780287 0.033015 0.620919, 0.859185 0.932541 0.252564
0.774645 0.083064 0.349744, 0.903457 0.888628 0.124621
0.293881 0.081041 0.053630, 0.220134 0.760599 0.688370
0.493690 0.930407 0.343378, 0.585411 0.439278 0.167284
0.648043 0.965342 0.702852, 0.219455 0.957094 0.895428
0.504966 0.639074 0.084498, 0.906610 0.508304 0.938057
0.716468 0.854022 0.986517, 0.385839 0.307391 0.681601
0.099368 0.291429 0.740170, 0.475139 0.160612 0.598743
0.252564 0.696499 0.576596, 0.788211 0.564812 0.486616
0.613177 0.259980 0.238984, 0.296858 0.344416 0.229757
0.526564 0.816547 0.598836, 0.429733 0.712523 0.742929
0.507514 0.904602 0.268688, 0.685066 0.562001 0.926251
0.614731 0.263859 0.402947, 0.432246 0.210193 0.939664
0.115992 0.498747 0.676389, 0.424152 0.141821 0.676522
0.778767 0.981750 0.935757, 0.208696 0.768371 0.292528
0.334815 0.183086 0.275601, 0.487257 0.590889 0.227333
0.975542 0.456665 0.257836, 0.577884 0.835181 0.876629
0.737370 0.699890 0.544111, 0.177496 0.781162 0.853225
0.558513 0.066648 0.194491


