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Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density func-
tional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-
temperature range of 0.387 – 5.35 g cm−3 and 500 K – 1.28×108 K. One coherent equation of
state (EOS) is derived by combining DFT-MD data at lower temperatures with PIMC results at
higher temperatures. Good agreement between both techniques is found in an intermediate temper-
ature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting
law. In order derive the entropy, a thermodynamically consistent free energy fit is introduced that
reproduces the internal energies and pressure derived from the first-principles simulations. The
equation of state is presented in form of a table as well as a fit and is compared with chemical
models. In addition, the structure of the fluid is analyzed using pair correlation functions. Shock
Hugoniot curves are compared with recent laser shock wave experiments.

I. INTRODUCTION

After hydrogen, helium is the second most common el-
ement in the universe. While it rarely occurs in pure form
in nature, it is an endmember of hydrogen-helium mix-
tures (HHM) that are the prevalent component in solar
and extrasolar giant gas planets. The characterization of
helium’s properties at extreme temperature and pressure
conditions is therefore important to study planetary in-
teriors and especially relevant for answering the question
whether HHM phase-separate in giant planet interiors1,2.
In most planetary models, the equation of state (EOS) of
HHM was inferred from the linear mixing approximation
at constant pressure and temperature using the EOSs of
pure hydrogen and helium. The latter is the central topic
of this article.

Hydrogen and helium share some common properties.
Both are very light and exhibit rich quantum proper-
ties at low temperature. More importantly for this pa-
per, the helium atom and the deuterium molecule have
similar masses and both have two elemental excitation
mechanisms that determine their behavior at high tem-
perature. The helium atom has two ionization stages
while deuterium molecules can dissociate and the result-
ing atoms can be ionized. However, helium is without
question simpler to characterize at high pressure. The
crystal structure is hexagonal closed-packed under most
(P, T ) conditions3,4 while in solid hydrogen, different de-
grees of molecular rotational ordering lead to several
phases that deviate from the h.c.p. structure. Hydro-
gen is expected to turn metallic at a few hundred GPa
while a much larger bandgap must be closed in helium,
which is predicted to occur above 10 000 GPa5,6.

Given the relative simplicity of helium’s high pressure
properties one expects that there would be less of a con-
troversy in the EOS than for hydrogen. This makes he-
lium a good material to test novel experimental and theo-
retical approaches. For hydrogen, the first laser shock ex-
periments that reached megabar pressures had predicted

that the material would be highly compressible under
shock conditions and reach densities six times higher than
initial state7,8. Later experiments9–12 showed reduced
compression ratios close to 4.3, which were in good agree-
ment with first-principles calculations13–15. In the case of
helium, there is very good agreement between the early
shock experiments by Nellis et al.

16 and first-principles
calculation17.

Recently the first laser shock experiments were per-
formed on precompressed helium samples18. The mea-
surements confirmed the theoretically predicted trend17

that the shock compression ratio is reduced with increas-
ing precompression. However, there is discrepancy in the
magnitude of the compression. Shock measurements18

without precompression showed compression ratios of
about 6 while first-principles simulation17 predicted only
5.24(4). The discrepancy between theoretical and experi-
mental predictions is reduced for higher precompressions.
For samples that were precompressed to 3.4-fold the am-
bient density, theory and experiment are in agreement.

The properties of fluid helium change from hard-sphere
liquid at low pressure and temperature to ultimately a
two-component plasma, after ionization has occurred at
high pressure and temperature. The associated insulator-
to-metal transition has been the topic of three recent the-
oretical studies that all relied on DFT methods. Kietz-
mann et al.

19 studied the rise in electrical conductivity
using the Kubo-Greenwood formula and compared with
shock-wave experiments by Ternovoi et al.

20. Kowalski
et al.

6 studied dense helium in order to characterize the
atmosphere of white dwarfs. This paper went beyond
the generalized gradient approximation by considering
hybrid functionals. Stixrude and Jeanloz21 studied the
band gap closure in the dense fluid helium at over a wide
range of densities including conditions of giant planet in-
teriors.

This article provides the EOS for fluid helium over a
wide range of temperatures (500 K–1.28×108 K) and den-
sities (0.387–5.35 g cm−3 corresponding to a Wigner-Seitz



2

78163264128
1/N

360

370

380

390
P

 (
G

P
a)

78163264128
1/N

11

12

13

P
re

ss
ur

e 
(G

P
a)

Aziz 
DFT−MD

FIG. 1: The upper panel shows the finite size dependence of
the pressure as function of the number atoms, N , as pre-
dicted from PIMC simulations with free-particle nodes at
T=125 000 K and rs = 1.86. The lower panel compares the
finite size dependence of DFT-MD simulations and classi-
cal Monte Carlo calculations using the Aziz pair potential
at T=10 000 K and rs = 2.4.

radius interval of rs=2.4–1.0 where 4
3πr3

s = V/Ne) by
combining two first-principles simulation methods, path
integral Monte Carlo (PIMC) at higher temperatures
with density functional molecular dynamics (DFT-MD)
at lower temperatures. The temperature range was sig-
nificantly extended compared to our earlier work17 that
focused exclusively on shock properties alone. Here, the
region of validity of both first-principles methods is ana-
lyzed and good agreement for EOS at intermediate tem-
peratures is demonstrated. The PIMC calculations have
been extended to much higher temperatures until good
agreement with the Debye-Hückel limiting law is found.
In the density interval under consideration, the entire
EOS of nonrelativistic, fluid helium has been mapped
out from first principles. All EOS data are combined into
one thermodynamically consistent fit for the free energy
and the entropy is derived. The structure of the fluid is
analyzed using pair correlation functions and, finally, ad-
ditional results for shock Hugoniot curves are presented.

II. METHODS

Path integral Monte Carlo22 is the most appropri-
ate and efficient first-principles simulation techniques for
quantum system with thermal excitations. Electrons and
nuclei are treated equally as paths, although the zero-
point motion of the nuclei as well as exchange effects are
negligible for the temperatures under consideration. The
Coulomb interaction between electrons and nuclei is in-
troduced using pair density matrices that we derived us-
ing the eigenstates of the two-body Coulomb problem23.
The periodic images were treated using an optimized
Ewald break-up24 that we applied to the pair action25.
The explicit treatment of electrons as paths leads to the
fermion sign problem, which requires one to introduce
the only uncontrolled approximation in this method, the
fixed node approximation26,27. We use the nodes from
the free-particle density matrix and from a variational
density matrix28. Besides this approximation, all corre-
lation effects are included in PIMC, which for example
leads an exact treatment of the isolated helium atom.

The DFT-MD simulations were performed with ei-
ther the CPMD code29 using local Troullier-Martins
norm-conserving pseudopotentials30 or with the Vi-
enna ab initio simulation package31 using the projec-
tor augmented-wave method32. The nuclei were propa-
gated using Born-Oppenheimer molecular dynamics with
forces derived from either the electronic ground state
or by including thermally excited electronic states when
needed. Exchange-correlation effects were described
by the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation33. The electronic wavefunctions were ex-
panded in a plane-wave basis with energy cut-off of 30-50
Hartrees. Most simulations were performed with N=64
using Γ point sampling of the Brillioun zone. An analysis
of finite size effect is presented in the following section.

III. EQUATION OF STATE

An analysis of finite size dependence of the EOS results
is important since all simulation are perform with a fi-
nite number of particle in periodic boundary conditions.
Figure 1 gives two examples for the finite size analysis
that we have performed at various (T, ρ) conditions. At
10 000 K and rs = 2.4, helium can be characterized as a
hard-sphere fluid. The artificial periodicity of the nuclei
dominate the finite size errors. Simulations with N = 64
atoms are sufficiently accurate for the purpose of this
study. The DFT-MD results also agree surprisingly well
with classical Monte Carlo calculation using the Aziz pair
potential34, which explains why both methods give fairly
similar Hugoniot curves as long as electronic excitations
are not important17.

The upper panel of Fig. 1 shows PIMC results for
125 000 K where a substantial part of the pressure comes
from excited electrons. They are still coupled to the mo-
tion of the nuclei, which leads to effective screening. In
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FIG. 2: Comparison of the relative excess pressure derived
from PIMC (solid lines) and DFT-MD. The dashed and
the dash-dotted lines show results DFT-MD simulation with
and without the consideration of thermally excited electronic
states, respectively.

consequence, the finite size dependence of the pressure
is reduced significantly, and a simulation with N = 16
atoms exhibit a finite size error of only 1% compared with
3% at lower temperature. This is reason why PIMC simu-
lations with 16 atoms already gave a fairly accurate shock
Hugoniot curve17. However, most PIMC results reported
in Tab. I were obtained with 32 atoms and some with 57
atoms. Already 32 atoms lead to well converged pressures
unless one is interested at very high temperature above
107K where all atoms are ionized and the coupling is
very weak. Although the total pressure is dominated by
the kinetic term, the excess pressure shows an increased
finite size dependence that requires simulation with 57
atoms in some cases. In general, the weak-coupling limit
is difficult to study with finite-size simulations35. Also
at very high density beyond the range considered here,
electrons approach the limit of an ideal Fermi gas and
form a rigid background. The remaining Coulombic sub-
system of ions is expected to require simulations with
several hundreds of particles36. In this regard, the elec-
tronic screening makes our simulations affordable.

Figure 2 compares the pressures obtained from PIMC
and DFT-MD simulations for several density. Above
20 000 K, excited electronic state become important.
Both first-principles method are in very good agreement,
which is foundation for the coherent EOS reported in this
paper. Reasonably good agreement between PIMC and
DFT-MD was reported for hydrogen earlier37. Figure 2
is a stringent test because it compares only the pressure
contributions that result from the particle interactions.
When one removes the ideal gas contributions, P0, has
one a bit of a choice for the corresponding noninteracting
system. At very high temperature, one wants to com-
pare with an ideal Fermi gas of electrons and nuclei. At
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FIG. 3: Excess internal energy per electron relative to the
ideal plasma model at a density of rs=1.86. The circles show
PIMC results. In the upper panel, the open squares and dia-
monds show DFT-MD results with and without thermal pop-
ulation of excited electronic states; respectively. The filled
squares shows DFT-MD results corrected by constant shift
corresponding to the DFT error of the isolated helium atom.
In lower panel, PIMC results are compared with the Debye
model.

low temperature, however, one prefers comparing with an
gas of noninteracting atoms. To combine these to lim-
iting cases, we construct a simple chemical model that
includes neutral atoms, He+ and He2+ ions as well as
free electrons. The ionization state is derived from the
Saha equilibrium using the following binding energies,
EHe = −79.0 eV, EHe+ = −54.4 eV. Besides the binding
energies, no other interaction are considered.

This approach smoothly connects the low- and high-
temperature limits. However for the correct interpreta-
tion of the presented graphs, it should be pointed out
that the pressures and energies of the ideal model de-
pend on the Saha ionization equilibrium. If the ideal
system exhibits a higher degree of ionization than the
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TABLE I: EOS table with pressures, internal and free ener-
gies per electron derived from (a) DFT-MD with 64 atoms (a
uniform ∆E/Ne = −0.4909 Ha correction was added to ac-
count for missing DFT correlation energy in the helium atom),
PIMC with (b) 32 atoms, (c) PIMC with 57 atoms, and (d)
Debye-Hückel limiting law. The numbers in brackets indi-
cate the statistical uncertainties of the DFT-MD and PIMC
simulations for the corresponding number trailing digits.

rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)
2.4a 500 1.420(10) -1.449873(7) -1.4554
2.4a 1000 2.045(14) -1.448401(10) -1.46135
2.4a 3000 4.69(3) -1.44273(3) -1.49126
2.4a 5000 6.98(4) -1.43727(3) -1.52534
2.4a 10000 12.49(4) -1.42395(5) -1.61873
2.4a 20000 22.19(8) -1.39427(12) -1.82386
2.4a 40000 43.37(11) -1.2997(2) -2.28643
2.4a 60000 68.27(10) -1.1748(2) -2.80627
2.4a 80000 96.93(12) -1.02525(7) -3.37236
2.4b 125000 172.3(6) -0.6667(17) -4.77369
2.4b 250000 445.7(6) 0.477(2) -9.31702
2.4b 333333 651.4(9) 1.237(3) -12.6707
2.4b 500000 1067.7(1.0) 2.634(3) -19.922
2.4b 571428 1249.9(9) 3.216(3) -23.1952
2.4b 666667 1484.2(5) 3.9507(16) -27.6612
2.4b 800000 1815.5(1.2) 4.972(4) -34.0708
2.4b 1×106 2308.4(7) 6.470(2) -43.9954
2.4b 2×106 4745.2(8) 13.754(2) -97.4249
2.4b 4×106 9587.6(1.2) 28.102(4) -213.949
2.4d 8×106 19253 56.72 -466.803
2.4d 16×106 38577 113.80 -1013.36
2.4d 32×106 77205 227.87 -2184.48
2.4d 64×106 154445 455.92 -4683.43
2.4d 128×106 308916 911.97 -10002.6
2.4d 256×106 617849 1824.04 -21267.5
2.4d 512×106 1235711 3648.14 -45052.4
2.4d 1024×106 2471430 7296.32 -95193.5
2.4d 2048×106 4942866 14592.67 -200489

simulation results, then this alone can lead to negative
excess pressures and energies, which one would normally
attribute exclusively to the interaction of free electrons
and ions. This effect becomes clear in Fig. 3 where even
the DFT-MD results without excited electrons exhibit a
negative excess internal energy at 80 000 K.

Figure 3 exhibits the missing correlation energies in
DFT GGA, which underestimates the binding energy in
the atom by ∆E0=0.98 eV. This is the main reason for
the disagreement with the ideal plasma model in the low-
temperature limit (1.20 eV/atom), while internal energy
increase due to the compression to rs = 1.86 amounts
only to 0.22 eV/atom. To correct for missing correlation
energy, we applied a uniform correction of −∆E0 to all
DFT results discussed later. We may assume that the
correction to DFT depends only weakly on temperature
and density. To determine its precise amount more ac-
curately is difficult and goes beyond the scope of this
article.

Despite this DFT insufficiency, one finds reasonably
good agreement in the internal energies reported by

TABLE II: Table I continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

2.2a 500 2.74(2) -1.449495(13) -1.45451
2.2a 1000 3.77(3) -1.44787(2) -1.4601
2.2a 3000 7.59(3) -1.44186(2) -1.48855
2.2a 5000 10.81(6) -1.43615(3) -1.5214
2.2a 10000 18.23(7) -1.42256(5) -1.61205
2.2a 20000 31.39(7) -1.39256(9) -1.812
2.2a 40000 59.54(13) -1.30036(19) -2.2635
2.2a 60000 92.10(11) -1.17937(16) -2.77064
2.2a 80000 129.52(10) -1.03399(12) -3.32222
2.2b 125000 223.9(7) -0.6962(16) -4.68439
2.2b 250000 569.6(7) 0.3971(16) -9.08923
2.2b 500000 1371.3(6) 2.5403(14) -19.3777
2.2b 1×106 2981.1(7) 6.3896(17) -42.807
2.2b 2×106 6148.3(8) 13.694(2) -95
2.2b 4×106 12438.6(1.7) 28.059(4) -209.039
2.2d 8×106 24982 56.67 -456.924
2.2d 16×106 50075 113.77 -993.605
2.2d 32×106 100227 227.85 -2144.93
2.2d 64×106 200508 455.91 -4604.15
2.2d 128×106 401053 911.96 -9843.99
2.2d 256×106 802134 1824.03 -20951.2
2.2d 512×106 1604287 3648.13 -44420.5
2.2d 1024×106 3208587 7296.31 -93928.4
2.2d 2048×106 6417184 14592.66 -197960

2a 500 6.101(13) -1.448584(6) -1.45297
2a 1000 7.59(2) -1.446835(11) -1.45806
2a 3000 13.57(5) -1.44022(3) -1.48466
2a 5000 18.07(7) -1.43433(4) -1.51606
2a 10000 28.62(11) -1.42013(8) -1.60363
2a 20000 47.02(12) -1.38968(11) -1.79771
2a 40000 84.72(12) -1.30039(15) -2.23673
2a 60000 128.66(14) -1.18357(12) -2.72986
2a 80000 178.84(19) -1.0433(2) -3.26574
2b 125000 297.4(7) -0.7291(12) -4.58614
2b 250000 745.9(7) 0.3112(13) -8.84403
2b 500000 1800.9(8) 2.4269(14) -18.7895
2b 1×106 3941.2(1.0) 6.2898(17) -41.5111
2b 2×106 8163.1(1.5) 13.621(3) -92.3417
2b 4×106 16544(2) 28.009(4) -203.653
2d 8×106 33228 56.61 -446.089
2d 16×106 66633 113.73 -971.926
2d 32×106 133390 227.82 -2101.53
2d 64×106 266868 455.88 -4517.11
2d 128×106 533797 911.95 -9669.7
2d 256×106 1067636 1824.02 -20604.1
2d 512×106 2135303 3648.12 -43727.2
2d 1024×106 4270628 7296.31 -92540.1
2d 2048×106 8541271 14592.66 -195186

PIMC and DFT-MD. Figure 3 shows that both meth-
ods report very similar increases in the energy resulting
from thermal excitations of electrons, which is the basis
for constructing one EOS table.

In order to explore the agreement between PIMC and
DFT-MD in more detail we resort to pressure calcula-
tions for a single configuration of nuclei that we have
obtain from DFT-MD with 57 atoms at 80 000 K. The
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TABLE III: Table II continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

1.86a 1000 13.55(3) -1.445347(12) -1.45574
1.86a 3000 21.50(8) -1.43837(4) -1.48081
1.86a 5000 28.04(9) -1.43196(4) -1.51097
1.86a 10000 41.40(10) -1.41740(6) -1.59608
1.86a 20000 65.16(13) -1.38638(9) -1.7856
1.86a 40000 112.98(18) -1.29844(18) -2.2149
1.86a 60000 167.7(2) -1.1854(2) -2.69739
1.86a 80000 229.42(15) -1.04980(12) -3.22147
1.86c 125000 378(2) -0.743(3) -4.51072
1.86b 250000 918.6(1.3) 0.2491(18) -8.65932
1.86b 333333 1340.7(1.3) 0.9607(18) -11.7193
1.86b 500000 2214.5(1.7) 2.336(2) -18.3468
1.86b 571428 2595(2) 2.910(3) -21.3458
1.86b 666667 3104(3) 3.661(4) -25.4472
1.86b 800000 3818(3) 4.699(4) -31.3521
1.86b 1×106 4876.7(1.5) 6.212(2) -40.5306
1.86b 2×106 10128(3) 13.559(3) -90.3193
1.86b 4×106 20550(5) 27.959(7) -199.554
1.86b 8×106 41316(7) 56.543(9) -437.845
1.86d 16×106 82822 113.69 -955.409
1.86d 32×106 165822 227.79 -2068.45
1.86d 64×106 331768 455.87 -4450.87
1.86d 128×106 663625 911.93 -9537.1
1.86d 256×106 1327312 1824.01 -20338.8
1.86d 512×106 2654668 3648.12 -43196.4
1.86d 1024×106 5309366 7296.30 -91478.5
1.86d 2048×106 10618754 14592.66 -193062
1.75a 1000 22.14(4) -1.443419(13) -1.45302
1.75a 3000 32.35(11) -1.43604(4) -1.47673
1.75a 5000 40.66(13) -1.42933(5) -1.50576
1.75a 10000 57.60(13) -1.41415(6) -1.58867
1.75a 20000 87.06(17) -1.38263(11) -1.77422
1.75a 40000 144.6(3) -1.2961(3) -2.19531
1.75a 60000 210.43(19) -1.18602(16) -2.66885
1.75a 80000 284.6(3) -1.05398(16) -3.18308
1.75b 125000 454.4(1.0) -0.7647(12) -4.44653
1.75b 250000 1098.0(1.1) 0.2015(13) -8.50508
1.75b 500000 2639.1(1.6) 2.2626(17) -17.9781
1.75b 1×106 5831.7(2.0) 6.143(2) -39.7109
1.75b 2×106 12139(2) 13.503(3) -88.6228
1.75b 4×106 24656(3) 27.915(4) -196.115
1.75b 8×106 49587(8) 56.501(10) -430.926
1.75d 16×106 99420 113.65 -941.531
1.75d 32×106 199083 227.76 -2040.64
1.75d 64×106 398335 455.85 -4395.24
1.75d 128×106 796789 911.92 -9425.79
1.75d 256×106 1593662 1824.00 -20115.4
1.75d 512×106 3187384 3648.11 -42749
1.75d 1024×106 6374809 7296.30 -90584.7
1.75d 2048×106 12749648 14592.65 -191274

nuclear coordinates are the rs = 1.86 snapshot are given
in Tab. A in the appendix. For this fixed configuration
of nuclei, we now compare the instantaneous pressure as
a function of electronic temperature. The fact that the
nuclei are now classical rather being represented by paths
in PIMC has a negligible effect on the pressure for the

TABLE IV: Table III continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)

1.5a 1000 73.92(10) -1.43440(3) -1.44135
1.5a 2000 84.42(12) -1.42977(4) -1.45018
1.5a 3000 92.66(12) -1.42576(4) -1.46128
1.5a 5000 107.7(2) -1.41813(7) -1.48725
1.5a 10000 137.9(3) -1.40115(11) -1.56358
1.5a 20000 189.4(4) -1.36731(18) -1.73814
1.5a 40000 285.0(4) -1.2819(2) -2.13878
1.5a 60000 387.4(4) -1.1802(2) -2.58963
1.5a 80000 505.3(3) -1.05690(13) -3.07884
1.5b 125000 770(2) -0.7880(16) -4.27821
1.5b 250000 1737.1(1.6) 0.0907(12) -8.11696
1.5b 500000 4114.7(1.6) 2.0709(12) -17.0558
1.5b 1×106 9147.6(1.6) 5.9425(12) -37.6523
1.5b 2×106 19175(2) 13.3390(15) -84.3488
1.5b 4×106 39062(5) 27.782(4) -187.433
1.5b 8×106 78690(10) 56.411(8) -413.442
1.5c 16×106 157860(7) 113.544(5) -906.451
1.5d 32×106 316058 227.68 -1970.31
1.5d 64×106 632486 455.79 -4254.46
1.5d 128×106 1265232 911.88 -9143.99
1.5d 256×106 2530649 1823.97 -19550.3
1.5d 512×106 5061428 3648.09 -41618.1
1.5d 1024×106 10122947 7296.28 -88324.9
1.5d 2048×106 20245959 14592.64 -186751

1.25a 3000 331.6(3) -1.39652(6) -1.42554
1.25a 5000 360.1(5) -1.38761(12) -1.44742
1.25a 10000 418.6(4) -1.36798(8) -1.51449
1.25a 20000 515.4(8) -1.3306(3) -1.67468
1.25a 40000 683.9(5) -1.24615(18) -2.05136
1.25a 60000 865.2(7) -1.1504(2) -2.47506
1.25a 80000 1063.2(1.0) -1.0378(3) -2.93438
1.25a 125000 1565.4(1.5) -0.7817(4) -4.05965
1.25b 250000 3074(3) -0.0069(11) -7.65192
1.25b 500000 6999(4) 1.8502(15) -15.9783
1.25b 1×106 15578(3) 5.6796(11) -35.2469
1.25b 2×106 32897(7) 13.107(3) -79.3259
1.25b 4×106 67243(80) 27.58(3) -177.186
1.25b 8×106 135808(19) 56.263(8) -392.772
1.25b 16×106 272614(30) 113.381(13) -864.979
1.25d 32×106 545908 227.54 -1887.16
1.25d 64×106 1092767 455.69 -4087.74
1.25d 128×106 2186203 911.81 -8810.14
1.25d 256×106 4372877 1823.92 -18883.5
1.25d 512×106 8746088 3648.06 -40286
1.25d 1024×106 17492411 7296.26 -85659.8
1.25d 2048×106 34984988 14592.63 -181419

temperatures under consideration. In both methods, the
instantaneous pressure is a well-defined quantity derived
from the virial theorem. In DFT, one uses the diagonal
elements of the stress tensor38, while is PIMC one derives
the pressure directly from the kinetic, 〈K〉, and potential,
〈V〉, energy,

3PV = 2 〈K〉 + 〈V〉 , (1)

where V is the volume of the simulation cell. DFT is pri-
marily a groundstate method that use an exchange func-
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TABLE V: Table IV continued.
rs T (K) P (GPa) E/Ne (Ha) F/Ne (Ha)
1a 5000 1560.1(5) -1.29739(8) -1.34504
1a 10000 1681.8(7) -1.27401(12) -1.40096
1a 20000 1878.6(1.0) -1.2313(2) -1.5439
1a 40000 2217.0(1.8) -1.1449(3) -1.88916
1a 62500 2608.7(1.8) -1.0456(3) -2.33028
1a 80000 2941(2) -0.9554(4) -2.7022
1a 125000 3890(2) -0.7276(4) -3.73996
1b 250000 6640(6) -0.0380(12) -7.04803
1b 333333 8780(6) 0.4717(12) -9.46272
1b 500000 13687(5) 1.6229(11) -14.6687
1b 571428 15920(5) 2.1410(11) -17.0286
1b 666667 18969(5) 2.8429(11) -20.2721
1b 800000 23334(5) 3.8385(12) -24.9776
1b 1×106 29972(5) 5.3367(12) -32.3609
1b 2×106 63676(11) 12.775(2) -73.2177
1b 4×106 130941(12) 27.326(3) -164.669
1b 8×106 264847(50) 56.052(10) -367.49
1c 16×106 532209(20) 113.270(5) -814.18
1c 32×106 1066140(60) 227.350(14) -1785.39
1d 64×106 2133644 455.50 -3884.05
1d 128×106 4269457 911.68 -8402.62
1d 256×106 8540444 1823.83 -18068.8
1d 512×106 17081968 3647.99 -38656.7
1d 1024×106 34164699 7296.21 -82400.7
1d 2048×106 68329938 14592.59 -174902

tional that was derived at T=0. It allows, however, to
include electronic excitations using a thermal population
of excited singe-particle states. On the other hand, PIMC
is a finite temperature quantum simulation method that
treats the electrons as interacting particles. The only
approximation comes from the fermion nodes.

Figure 4 compares the instantaneous pressures from
both methods. At intermediate temperatures, there is a
large interval where both methods agree. DFT pressures
appear to be fairly accurate. For the level of accuracy
needed for this study we could not detect any insuffi-
ciency resulting from the groundstate exchange correla-
tion functional nor from inaccurate thermal excitations
resulting from an underestimated bandgap. However, the
DFT eventually become prohibitively expensive at higher
temperature. Some of the points at rs = 2.4 required up
to 100 bands per atom, and that is one reason why we
only used a single configuration. The other comes from
path integrals. PIMC simulations with 123 atoms shown
in Fig. 1 represent about the limit one can study with
currently available computers. If one wants to repeat the
calculations at lower temperature where the paths are
longer, or using the more expensive variational nodes,
one quickly exceeds existing limits in processing power.

Figure 4 also reveals inaccuracies in the PIMC com-
putation that are caused by approximations in the trial
density matrix. PIMC with free-particle nodes predict
pressures that are too high when the electrons settle into
the ground state (T ≤ 40 000 K for rs=1.86 as shown in
Fig. 2). This effect has already been reported for hy-
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FIG. 4: Comparison of the instantaneous pressure for a fixed
configuration of nuclei derived from PIMC and DFT with
thermally populated states. The upper panel included results
from PIMC with variational nodes. The lower panel compares
PIMC results with free-particle nodes for different densities.
(The ideal gas contributions from the nuclei are not included.)

drogen14. In the variational density matrix approach28

one allows the trial density matrix to adjust to the po-
sitions of the nuclei, which corrects most of the pressure
error as can be seen in upper panel of Fig. 4. However,
the variational approach was derived to study finite tem-
perature problems. It does not describe the electronic
ground state as well as DFT.

For the purpose of construction one EOS table for he-
lium, we use DFT-MD results with electronic excitation
up to 80 000 K for rs ≥ 1.5 and results up to 125 000 K for
rs = 1.25 and 1.0. For all higher T , we use PIMC simula-
tions, which become more and more efficient at higher T
because the length of the paths is inversely proportional
to temperature.

It should noted that the discussed validity range of dif-
ferent trial density matrices depends very much on the
material under consideration. The temperature where
we switch from PIMC to DFT-MD reflects the degree
of thermal electronic excitations as well as some depen-
dence of the approximations made in both methods. The
density dependence of the switching temperature would
typically be estimated by comparing the temperature to
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the legend. The ideal pressure, P0, is derived Saha model of
noninteracting helium species (see text).

the Fermi energy of an ideal gas of electrons. However,
to incorporate band structure effects of dense helium, we
found it more appropriate to relate the switching temper-
ature to the DFT band width. Band width and Fermi
energy are identical in the systems of noninteracting par-
ticles. For the purpose of this study, we found it appropri-
ate to switch from PIMC to DFT-MD for temperatures
corresponding to less than one third of the helium band
width.

We performed PIMC simulations up to 1.28 × 108 K
covering a large temperature interval of two orders of
magnitude. The excess internal energies and pressures
in Figs. 2, 3, and 5 are positive a lower temperatures
reflecting electronic excitations but then change sign due
to interactions of ions and free electrons. At very high
temperature when helium is fully ionized, the system can
be described by the Debye plasma model39. The Debye
model is based on a self-consistent solution of the Poisson
equation for a system of screened charges. The excess
contribution to the free energy, internal energy, entropy
per particle, and pressure are given by,

F

Np
=

Ξ

12
,

E

Np
=

Ξ

8
,

S

Np
=

Ξ

24
, P =

Ξ

24V
, (2)

Ξ = −kBTV
κ3

π
, κ2 =

4π

kBT

∑

i

Z2
i

Ni

V
, (3)

where κ = 1/rd is the inverse of Debye radius, rd, in a
collection of Ni particles of charge Zi in volume V where
Np =

∑

i Ni. Figure 5 demonstrate very good agreement
with the Debye model at high temperature. The De-
bye model fails at lower temperatures where it predicts
unphysically low pressures. Under these conditions the
screening approximation fails because there are too few

particles in the Debye sphere. The number of particles
in the Debye sphere is proportional to,

(rd/rs)
3 ∼ (T rs)

3/2 , (4)

which means that the Debye model becomes increasingly
accurate for high T and large rs. This is exactly what
is observed in Fig. 5. For higher densities, PIMC and
Debye predictions converge only at higher temperatures.

The size of the Debye sphere increases with tempera-
ture and will eventually exceed the size of any simulation
cell. This occurs when the coupling the particles become
very weak. With increasing temperature, the Coulomb
energy decreases while the kinetic energy increase linearly
with T . To determine the precise amount of the Coulomb
energy becomes more and more difficult due to finite size
effects. This is the reason why the PIMC simulations do
not agree perfectly with the Debye model for the high-
est temperature shown in the lower panel of Fig. 3. In
conclusion, we use the Debye EOS for the highest data
in our EOS table. The nonideal pressures reported in
Fig. 5 appear to be less sensitive to finite size errors than
the internal energy because their volume dependence is
relatively weak.

Now we compare our first-principle EOS with chemi-
cal free energy models that were developed before first-
principles simulation data became available. Winisdoerf-
fer and Chabrier40 constructed a semianalytical model
to study stellar interiors that covers a wide density range
including metallization. Their EOS is only available in
explicit form in a small temperature interval and a com-
parison with DFT-MD simulation has already been re-
ported19. That is why we focus on the free energy model
derived by Saumon, Chabrier, and van Horn (SCvH)41.
Together with their hydrogen model42, their EOS has
been used numerous times to model giant planet interi-
ors.

Figure 6 compares the excess pressure from both EOSs
for three different temperatures. At a very temperature
of 106K that are important for stellar interiors, we found
fairly good agreement. The deviations between the SCvH
model and PIMC simulations are only about 4%.

At a intermediate temperature of 100 000 K, that ap-
proximately represent the regime of shock wave experi-
ments, the agreement is less favorable. One finds that the
SCvH EOS reports pressures that are about 30% lower
than those predicted by PIMC. This is partly due to the
fact that the SCvH model follows the Debye model down
to too low temperatures (Fig. 3) and that an interpola-
tion scheme between a low and a high-temperature model
was used by SCvH that was not thermodynamically con-
sistent (Fig. 13).

The last panel in Fig. 6 is focused on the interiors of gi-
ant planets with temperature of the order to 10 000 K. At
low density both EOSs agree well, but above 1.5 g cm−3

deviation begin to increase steadily. At conditions com-
parable to Jupiter’s interior, we find that the SCvH un-
derestimates the pressure by 30%. In a hydrogen-helium
mixture of solar composition, this translates into an er-



8

0

0.1

0.2
(P

−
P

0)
/P

0

SCvH
PIMC

T=10
6
K

0

1

2

(P
−

P
0)

/P
0

SCvH
PIMC

T=100000K

0 1 2 3 4 5 6 7
Density [g cm

−3
]

0

5

10

15

20

(P
−

P
0)

/P
0

SCvH
DFT−MD

T=10000K

FIG. 6: Comparison of the relative excess pressure reported
by first-principles simulations with the SCvH EOS model.
The three temperatures shown here are relevant for stellar
interiors, the comparison with shock wave experiments, and
the interiors of giant planets.

ror in the pressure of about 4%. This is the reason why
even the helium EOS is important to estimate the size
of Jupiter’s core, which is expected to be only a small
fraction of the Jupiter’s total mass.

IV. PAIR CORRELATION FUNCTIONS

In this section, we study the structure of the fluid by
analyzing correlations between different types of parti-
cles. Given the large amount of simulation results, we
focus our attention primarily on the temperature depen-
dence and only report results for one density of rs = 1.86.
The density dependence of the pair correlation functions,
g(r), has been analyzed in Ref.37.

Figure 7 shows how the nuclear pair correlation func-
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FIG. 7: The nuclear pair correlation functions for rs = 1.86.
The lower panel shows the following temperatures: { 128, 64,
32, 16, 8, 4, 2, 1, 0.5, and 0.125 } ×106 K from PIMC as well
as { 40, 20, 10, 5, 3, and 1 } ×103 K from DFT-MD.

tions changes over a temperature interval that spans
seven orders of magnitude. At low temperature, the g(r)
shows the oscillatory behavior that is typical for a hard-
sphere fluid. The atomic interactions are governed by
two tightly bound electrons that lead to a strong repul-
sion at close range due to Pauli exclusion. As long as the
density is not too high, this behavior is well-described by
the Aziz pair potential17.

As temperature increases, two effects change the pair
correlation function. The increase in kinetic energy leads
to stronger collisions and atoms approach each other
more. This is regard, helium is not exactly a hard-sphere
fluid because the Aziz pair potential is not perfectly hard.
The increase in temperature also damps of the oscillation
in the g(r).

At 80 000 K, one finds perfect agreement between
PIMC and DFT-MD (upper panel in Fig. 7). As the
temperature is increased further, changes in nuclear g(r)
function are dominated by electronic excitations and the
ionization of atoms. One finds that the strong repul-
sion at low temperature disappears gradually. As one
approaches the Debye-Hückel limit, the fluid behaves like
correlated system of screened Coulomb charges.

The peak in the electron-nucleus pair correlation func-
tions in Fig. 8 illustrates that the electrons are bound
to the nuclei. At 40 000 K and below, the peak height
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FIG. 9: The electron-electron pair correlation functions for
electrons with parallel spins calculated with PIMC for rs =
1.86. Starting from the left, the following temperatures are
plotted: { 32, 16, 8, 4, 2, 1, 0.25, 0.125, 0.08, 0.0625, 0.04 }
×106 K. With increasing temperature, correlation effects are
reduced and the exchange-correlation hole disappears.

is maximal. At higher temperature, electrons get ex-
cited and eventually atoms get ionized. The peak height
is consequently reduced until, at very high temperature,
the motion of electrons and nuclei appears to be uncor-
related.

The correlation of electrons with parallel spins is de-
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FIG. 10: The electron-electron pair correlation functions for
electrons with opposite spins calculated with PIMC for rs =
1.86. Starting from the top, the following temperatures are
plotted: { 0.04, 0.0625, 0.08, 0.125, 128, and 1 } ×106 K. The
smallest values are observed for 106 K.

termined by Pauli exclusion and Coulomb repulsion but
is also influenced by the motion of the nuclei at low tem-
perature. Combination of all these effects causes the mo-
tion of same-spin electrons to be negatively correlated
at small distances. This is typically referred to as the
exchange-correlation hole. At high temperatures, kinetic
effect reduces the size of this hole but g(r) always goes
to zero for small r due to Pauli exclusion.

Despite the Coulomb repulsion, the electrons with op-
posite spins are positively correlated at low temperature,
because two electrons with opposite spin are bound in a
helium atom. With increasing temperature, the peak in
Fig. 10 reduces in height because more and more elec-
trons get ionized. At 106, one finds the lowest values for
g(r → 0) because the electrons are anti-correlated due to
the Coulomb repulsion. If the temperature is increased
further kinetic effects dominate over the Coulomb repul-
sion and g(r → 0) again increases and will eventually
approaches 1 at high temperature.

V. ENTROPY CALCULATIONS

Convection in the interior of planets determines that
the temperature-pressure profile is adiabatic. In con-
sequence, the planetary interiors is fully determined by
the conditions on the surface and the EOS. This makes
the calculation of adiabats important. However, neither
Monte Carlo nor molecular dynamics methods can di-
rectly compute entropies because both techniques save
orders of magnitude in computer time by generating a
only representative sample of configurations. Without
this gain many-body simulations would be impossible
and in consequence, entropies that are measure of the
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FIG. 11: Comparison in temperature-density space of adi-
abats from first-principles simulations (this work) and the
SCvH EOS model.

total available phase space are not accessible directly.
Typically one derives the entropy by thermodynamic

integration from a know reference state. However, for the
planetary interiors, the absolute value of the entropy is
not important as long as one is able to construct (T, P )
curve of constant entropy. This can be done using the
pressure and the internal energy from first-principles sim-
ulations at different (T, V ) conditions. Using Maxwell’s
relations, one finds,

∂T

∂V

∣

∣

∣

∣

S

= −
∂S
∂V

∣

∣

T
∂S
∂T

∣

∣

V

= −T
∂P
∂T

∣

∣

V
∂E
∂T

∣

∣

V

. (5)

By solving this ordinary differential equation, (V,T)-
adiabats can be constructed as along as a sufficiently
dense mesh of high-quality EOS points are available to
make the required interpolation and differentiation of E
and P with respect to temperature satisfactorily accu-
rate.
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FIG. 12: Comparison in temperature-pressure space of the
adiabats shown in Fig. 11.

One drawback of formula (5) is that it is not necessarily
thermodynamically consistent if pressures and internal
energies are interpolated separately. This is the primary
reason why we developed the following method to fit the
free energy instead. Pressure and internal energy are
related to the free energy, F (V, T ), by

P = −
∂F

∂V

∣

∣

∣

∣

T

and E = F − T
∂F

∂T

∣

∣

∣

∣

V

. (6)

Different EOS fits for fluids have been proposed in the
literature36,43. Thermodynamic consistency was not a
priority in each case. Both papers relied on specific func-
tional forms that were carefully adjusted to the material
under consideration. Although such a fit of specific form
could probably have also been constructed for the pre-
sented helium EOS data, we wanted to have an approach
that is not just applicable to one material. Therefore, we
decided to represent the free energy as a bi-cubic spline
function with temperature and density as parameters.
This spline function can accurately represent our helium
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EOS data and can easily be adapted to fit other mate-
rials. Cubic splines are twice continuously differentiable,
which means the derived pressures and energies are once
continuously differentiable with respect to V and T . This
is sufficient for this study. If additional thermodynamic
functions that require higher order derivatives of the free
energy, such as sound speeds, need to be fit also then
higher order splines can accommodate that.

We start the free energy interpolation by constructing
as series of one-dimensional splines functions Fn(T ) for
different densities. The choice of knots Ti is arbitrary.
Their location should be correlated with the complex-
ity of the EOS as well as the distribution of EOS data
points. In our helium example, we used a logarithmic
grid in temperature with about half as many knots as
data points. The set of free energy values on the knots,
F (Ti), represent the majority of the set of fit parameters.
In addition, one may also include the first derivatives of
the splines ∂Fn

∂T |V at the lowest and highest temperature,
which represent the entropy. Alternatively, one could de-
rive those derivatives by other means and then keep them
fixed during the fitting procedure.

To compute the free energy at a specific density, n∗,
and temperature, T ∗, we first evaluate all splines Fn(T ∗)
and then construct a secondary spline at constant tem-
perature as function of density, FT∗(n). Its first derivate
is related to the pressure. Again, the derivative at the
interval boundaries can either be fixed or adjusted during
the fitting procedure. We adjust them by introducing an
additional spline ∂F

∂n |T (T ) at the lowest and highest den-
sities, which then get adjusted in the fitting procedure.

We begin the fitting procedure with an initial guess
for the free energy function derived from Eq. (5). Then
we employ conjugate gradient methods44 to optimize the
whole set of fitting parameters. Minimizing the sum of
the squared relative deviations in pressure and internal
energy has been found to work best. (Just for the deriva-
tion of the relative deviation in energy, the zero of energy
has been shifted to value of the isolated helium atom.)

All fits tend to introduce wiggles if too many free pa-
rameters are included. We control wiggles by adjusting
the number of knots in density and temperature but we
also introduced penalty in the form,

ξ =

∫

dρ

(

∂3F

∂n3

)2

, (7)

to favor fits with smaller |∂2P/∂n2|. Finally we changed
the density argument in the spline interpolation from
FT (ρ) to FT (log(ρ)). This improves the fit in the high
temperature limit where the free energy is dominated by
the ideal gas term that has logarithmic dependence on
density.

The presented free energy fit is thermodynamically
consistent by construction. It allowed us to accurately
represent the entire data set of P and E values. Without
additional information, the free energy can be determined
up to a term T∆S, which is sufficient to compute adia-
bats. To determine the absolute value of the entropy, one
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FIG. 13: Comparison of Jupiter’s isentrope with helium shock
Hugoniot curves for different precompression ratios. The la-
bels specify the precompression ratio relative to the density
at ambient pressures (ρ0 = 0.1235 g cm−3, Ref.16). The sym-
bols approximately represent recent experiments18. The in-
side of the dashed box indicates conditions, for which the
SCvH EOS41 was interpolated and is not thermodynamically
consistent.

needs an anchor point, for which the entropy was derived
by different means.

Figure 11 compares different adiabats derived from our
first-principles EOS with predictions from the SCvH EOS
model. Beginning from a joint starting point of rs = 2.4
and a selection of seven different temperatures of 3000,
5000, 10 000, 50 000, 100 000, 500 000, and 106 K, we con-
structed the adiabats for both models for the density in-
terval under consideration. The upper panel of Fig. 11
demonstrates good agreement between both methods a
low densities up to about 1 g cm−3. For higher densi-
ties, one finds deviations of up to 20% in the predicted
temperatures on the adiabat. A higher temperature, the
agreement get substantially better, which is illustrated
in the lower panel of Fig. 11. The observed deviations
are similar to pressure differences shown in Fig. 6.

For applications in the field of planetary science, we
also show the adiabats in (T ,P ) space in Fig. 12. The de-
viations are comparable in magnitude but appear smaller
on a logarithmic scale.

VI. SHOCK WAVE EXPERIMENTS

Dynamic shock compression experiments are the pre-
ferred laboratory experiments to probe the properties
materials at high pressure and temperature. Using big-
ger and more powerful lasers, great progress has been
made in reaching higher and higher pressures. Under
shock compression, the initial state of material character-
ized by internal energy, pressure, and volume (E0, P0, V0)
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from Fig. 13 plotted as function of shock compression.

changes to the final state described by (E, P, V ). The
conservation of mass, momentum, and energy yields the
Hugoniot condition45,

H = (E − E0) +
1

2
(P + P0)(V − V0) = 0. (8)

Different shock velocities lead to a collection of final
states that are described by a Hugoniot curve. Using
Eq. 8, this curve can easily calculated for a given EOS
where one most often may assume P0 ≪ P . V0 = 32.4
cm3/mol (ρ0 = 0.1235 g cm−3) is taken from experi-
ment16. For E0, one takes the energy of an isolated
helium atom, which must be calculated consistently with
the final internal energy, E. An initial static precompres-
sion that changes V0 will also affect E0 and P0 but the
corrections are negligible as long as the amount of initial
compression work as small compared to the energy that
is deposited dynamically. Assuming dE0 = dP0 = 0, the
total differential of H reads,

dH = dE +
P

2
dV −

P

2
dV0 +

1

2
(V − V0)dP (9)

The point of maximum compression, ηmax = V0/V ,
along the Hugoniot curve can be derived by setting,
dH = dV = dV0 = 0. The resulting condition can
be expressed in terms of the Grüneisen parameter, γ ≡
V ∂P

∂E

∣

∣

V
= 2/(ηmax − 1).

Now we will determine how the maximum compres-
sion ratio, ηmax, changes if the sample is precompressed
statically. Keeping the final shock pressure constant, the
compression ratio changes as function of the initial sam-
ple volume, V0,

∂η

∂V0

∣

∣

∣

∣

P

=
1

V
−

V0

V 2

∂V

∂V0

∣

∣

∣

∣

P

. (10)
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FIG. 15: Pressure-density plot of shock Hugoniot curves for
different precompression ratios. The upper panel shows the
shock Hugoniot curves from Fig. 14, recent experimental re-
sults (symbols), and the range of the lower plot. Below we
plot the Hugoniot curves for precompression ratios (see la-
bels) that approximately match the experimental conditions
(symbols, see Ref.18). The error bar on the upper left solid
line represents the uncertainty in the calculations.

Setting dH = dP = 0 in Eq. 9, one finds,
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∣
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Inserting this result into Eq. 10 yields,

V
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∂V0
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∣

∣

P

=
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γ(2 + δ)
. (12)

Since the parameters γ and δ are both positive, the re-

lation, ∂ηmax

∂V0

∣

∣

∣

P
> 0, is equivalent to the relation, δ < γ,

which is again equivalent to,
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ρ
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If this condition is fulfilled for a particular EOS then
the maximum shock compression ratio will decrease if
the sample is precompressed statically, which reduces V0.
We have computed the isoenergetic compressibility for
our first-principles EOSs for helium and hydrogen and
verified that this condition is satisfied for both materials
(Fig. 14). It is also fulfilled for an ideal plasma model be-
cause the maximum compression ratio is determined by
the balance of excitations of internal degrees of freedom
and interaction effects17. Although all interactions are
neglected, an ideal model correctly represents the fact
the excited states are suppressed at high density because
of the reduced entropy. The diminished importance of
excitations reduces the maximum compression ratio to
values closer to 4, which is the expected result for non-
interacting systems without internal degrees of freedom.

Recent laser shock wave experiments18 reached pres-
sures of 2 megabars in fluid helium for the first time.
The sample was precompressed statically in a modified
diamond anvil cell before the shock was launched. The
static precompression is an important development that
enables one to reach higher densities and still allows one
to direct determine the EOS. Reaching higher densities is
important for planetary interiors because shock Hugoniot
curves rise faster than adiabats in a P -T diagram shown
in Fig. 13. As a result, a large part of Jupiter’s adia-
bat remains inaccessible unless one increases the start-
ing density by precompression. The precompression and
relation of planetary interiors was studies theoretically
in Ref.46. It was demonstrated that precompression of
up to 60 GPa would be needed to characterize 50% of
Jupiter’s envelope. The challenge is here to reach high
enough densities because a single shock wave compresses
the material only 5.25-fold or less (Fig. 14).

The measurements of J. Eggert et al.
18 confirmed two

of our theoretical predictions17. They showed that he-
lium has a shock compression ratio substantially larger
than 4 due the electronic excitations and that the com-
pression ratio would decrease with increasing precom-
pression (Fig. 14). However, the measurements appeared
to be in better agreement with the SCvH EOS model
than PIMC simulations18. The SCvH model predicts a
maximum compression ratio of 6.5 to occur around 300
GPa. A different chemical model based on an expansion
of the activity47 predicts maximum compression ratios
between 5.6 and 6.2 to occur at about 100 GPa.

Figure 15 shows a detailed comparison between exper-
iments and our first-principles simulations. The shock
measurements without precompression indeed show a

higher compression than predicted from first principles.
The deviations are outside the experimental error bars.
However, this discrepancy goes away with increasing pre-
compression. The shocks with 3.4-fold precompression
are in good agreement with first-principles predictions.
We have no explanation for this trend at present.

The reason why the SCvH EOS yields larger compres-
sion ratios can be understood by looking at the pressure
that this model predicts. Using our first-principles EOS,
we derived the shock temperatures that correspond the
reported P -ρ measurements. In the resulting tempera-
ture range of 24 000 – 63 000 K, the SCvH EOS signif-
icantly underestimates the pressure (see Fig. 6), which
leads to higher predicted compressions (Eq. 8). Further-
more, all measurements fall in the region where the SCvH
model relied on interpolation (Fig. 13) and is not expect
be as reliable.

VII. CONCLUSIONS

This paper combined path integral Monte Carlo and
density functional molecular dynamics simulation to de-
rive one coherent equation of state for fluid helium at
high pressure and temperature. Helium is a compara-
tively simple material since it does not form chemical
bonds nor has core electrons, but the our approach of
combining two simulation techniques can be generalized
to study more complex materials at extreme conditions.
Certainly the presented approach to fit the free energy
and to derive adiabats works for any set of EOS data
points derived from first-principles simulations.

For the future, one might consider replacing DFT-MD
with coupled ion-electron Monte Carlo48. However this
is strictly a groundstate method and one would still need
to find a way to include electronic excitations.

Acknowledgments

This material is based upon work supported by NASA
under the grant NNG05GH29G and by the NSF under
the grant 0507321. We thank D. Saumon for providing
us with his He EOS table41, and acknowledge receiving
the preliminary manuscript21 from L. Stixrude and R.
Jeanloz. We thank the authors of ref.18 for sending us a
table with their experimental results.

1 D.J. Stevenson and E.E. Salpeter. Astrophys. J. Suppl.

Ser., 35:221, 1977.
2 D.J. Stevenson and E.E. Salpeter. Astrophys. J. Suppl.,

35:239, 1977.
3 H.-K. Mao et al. Phys. Rev. Lett., 60:2649, 1988.
4 P. Loubeyre, R. LeToullec, J. P. Pinceaux, H. K. Mao,

J. Hu, and R. J. Hemley. Phys. Rev. Lett., 71:2272, 1993.
5 D. A. Young, A. K. McMahan, and M. Ross. Phys. Rev.

B, 24:5119, 1981.
6 P. M. Kowalski, S. Mazevet, D. Saumon, and M. Challa-

combe. Phys. Rev. B, 76:075112, 2007.
7 L. B. Da Silva et al. Phys. Rev. Lett., 78:483, 1997.



14

8 G. W. Collins et al. Science, 281:1178, 1998.
9 M. D. Knudson et al. Phys. Rev. Lett., 87:225501, 2001.

10 M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall,
and J. R. Asay. Phys. Rev. Lett., 90:035505, 2003.

11 S.I. Belov et al. JETP Lett., 76:443, 2002.
12 G. V. Boriskov et al. Phys. Rev. B, 71:092104, 2005.
13 T. J. Lenosky, J. D. Kress, and L. A. Collins. Phys. Rev.

B, 56:5164, 1997.
14 B. Militzer and D. M. Ceperley. Phys. Rev. Lett., 85:1890,

2000.
15 S. A. Bonev, B. Militzer, and G. Galli. Phys. Rev. B,

69:014101, 2004.
16 W. J. Nellis et al. Phys. Rev. Lett., 53:1248, 1984.
17 B. Militzer. Phys. Rev. Lett., 97:175501, 2006.
18 J. Eggert et al. Phys. Rev. Lett., 100:124503, 2008.
19 A. Kietzmann, B. Holst, R. Redmer, M. P. Desjarlais, and

T. R. Mattsson. Phys. Rev. Lett., 98:190602, 2007.
20 V. Ya. Ternovoi et al. AIP Conf. Proc., 620:107, 2002.
21 L. Stixrude and R. Jeanloz. Fluid helium at conditions

of giant planet interiors. Submitted to Proc. Nat. Ac. Sci.

(2008).
22 D. M. Ceperley. Rev. Mod. Phys., 67:279, 1995.
23 E. L. Pollock. Comp. Phys. Comm., 52 :49, 1988.
24 V. Natoli and D. M. Ceperley. J. Comp. Phys., 117:171–

178, 1995.
25 B. Militzer and R. L. Graham. Journal of Physics and

Chemistry of Solids, 67:2143, 2006.
26 D. M. Ceperley. J. Stat. Phys., 63:1237, 1991.
27 D. M. Ceperley. Editrice Compositori, Bologna, Italy,

1996.
28 B. Militzer and E. L. Pollock. Phys. Rev. E, 61:3470, 2000.
29 CPMD, Copyright IBM Corp 1990-2006, MPI für

Festkörperforschung Stuttgart 1997-2001.
30 N. Troullier and J. L. Martins. Phys. Rev. B, 43:1993,

1991.
31 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993);

G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994);
G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15
(1996); G. Kresse and J. Furthmüller, Phys. Rev. B 54,
11169 (1996).
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Appendix A: Free energy spline interpolation

We constructed the following 2D spline interpolation
of the free energy in order to reproduce the internal en-
ergy and pressures from Tab. I. We use atomic units
of Hartrees and Bohr radii. For each density of rs =
{2.4, 2.0, 1.6, 1.2, 0.8}, we construct a cubic spline Fn(T ).
Table VI lists 16 knot points (Ti, F (Ti)) for each den-
sity. In addition, the first derivate ∂F

∂T are specified at
the lowest and highest temperatures. This is sufficient to
construct a cubic spline function F (T )44.

In a similar fashion, we derive a spline function that
contains that free energy derivative with respect to den-
sity, ∂F

∂n (T ), at the lowest and highest densities, rs = 2.4
and 0.8 respectively. n is the density of the electrons,
n = Ne/V . Those knot points as well as the T deriva-
tives are included in Tab. VI also.

In order to obtain the free energy for a particular
density and temperature, (n∗, T ∗), we proceed as fol-
lows. First we evaluate the spline functions F (T ∗) and
∂F
∂n (T ∗) at temperature T ∗. Using these five knots points
and density derivatives, we construct a spline function,
F (log(n)). We use log(n) as argument because it better
represents the high-temperature limit of weak interac-
tions. Note that the constructed splines for the density
derivate contain ∂F

∂n and not ∂F
∂ log(n) . Then F (log(n)) is

evaluated at the density of interest, n∗. Finally we add
the term, −T∆S = −13.7902836 Ha*T , which brings
the entropy in agreement with our Debye-Hückel refer-
ence point at high temperature for rs=1.86. This pro-
cedure yields the free energy F (n∗, T ∗) in Hartrees per
electron. Other thermodynamic variables including pres-
sure, internal energy, entropy, and Gibbs free energy can
be obtained by differentiation.
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TABLE VI: Knot points for free energy spline interpolation

T (a.u.) f(rs = 2.4, T ) f(rs = 2.0, T ) f(rs = 1.6, T ) f(rs = 1.2, T ) f(rs = 0.8, T )
0.001583407607 -1.433567121 -1.431135811 -1.422237604 -1.377317056 -1.089747214
0.004369348882 -1.406243368 -1.402248169 -1.390358674 -1.34121764 -1.049220122
0.01205704051 -1.338444742 -1.330719999 -1.313137294 -1.255091313 -0.9491949603
0.03327091284 -1.169814789 -1.154154406 -1.125146478 -1.047701304 -0.7135001905
0.09180973061 -0.7578793569 -0.7214892496 -0.6653645937 -0.5501514183 -0.1583196636
0.2533452171 0.1213432393 0.2279596473 0.3697481593 0.5961317377 1.145222958
0.6990958211 1.448161918 1.849742465 2.331720062 2.967152398 4.011622282
1.929126481 1.650153009 3.082886945 4.795803813 6.956651264 9.947352284
5.323346054 -6.480107758 -2.223161966 2.964697691 9.579180258 18.74636894
14.6895569 -50.37972679 -38.41515844 -23.79211621 -4.992619324 21.39894481
40.53523473 -231.4313924 -198.2806566 -157.6765535 -105.3657984 -31.61456362
111.8553314 -893.7314032 -802.1449141 -689.7861073 -544.9061891 -340.7935545
308.660237 -3172.519712 -2918.919455 -2608.696846 -2207.77895 -1644.63782
851.7353686 -10693.37579 -9996.590015 -9137.681211 -8032.176108 -6477.239292
2350.329104 -34893.6373 -32971.41578 -30600.55572 -27552.36594 -23259.81241
6485.637557 -111050.5942 -105746.9466 -99203.62441 -90788.1102 -78945.99564
f ′(rs, T1) 10.43646526 10.93007841 12.42958105 14.04097874 13.75171132
f ′(rs, TN ) -19.3620206 -18.54727965 -17.53417624 -16.23883073 -14.41224513

T (a.u.) ∂f

∂n
(rs = 2.4, T ) ∂f

∂n
(rs = 0.8, T )

0.001583407607 0.1605721538 0.9460950728
0.004369348882 0.2923651353 0.9625433841
0.01205704051 0.6458549976 0.9782855175
0.03327091284 1.463747273 1.029890765
0.09180973061 3.574255133 1.142591093
0.2533452171 10.98479122 1.409424435
0.6990958211 43.27443042 2.089943658
1.929126481 153.211445 5.309130852
5.323346054 450.4159975 15.9843674
14.6895569 1263.720981 46.33079487
40.53523473 3502.359609 129.8984992
111.8553314 9679.619949 359.8256334
308.660237 26719.83852 992.5003633
851.7353686 73736.1465 2741.461026
2350.329104 203474.5198 7568.332998
6485.637557 561480.8894 20879.15481
f ′(rs, T1) 47.35562925 6.453623893
f ′(rs, TN) 86.57538487 3.218499127
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TABLE VII: Reduced coordinates of the DFT-MD configu-
ration with 57 atoms that was used to report the rs = 1.86
results for the instantaneous pressure in Fig. 4. The cell size
is L = 14.5382 a.u.

x/L y/L z/L x/L y/L z/L
0.749029 0.334272 0.723992, 0.359050 0.631169 0.090795
0.636183 0.917961 0.531890, 0.500277 0.715818 0.420142
0.509121 0.642554 0.328933, 0.192192 0.222632 0.042651
0.273631 0.845722 0.363632, 0.070837 0.830223 0.693497
0.053785 0.837401 0.054990, 0.138489 0.091713 0.097622
0.250609 0.517490 0.740851, 0.953625 0.430789 0.067921
0.107008 0.407958 0.463387, 0.023708 0.960709 0.487179
0.988548 0.830572 0.241931, 0.811738 0.062550 0.902069
0.244399 0.482412 0.399190, 0.693258 0.647174 0.360832
0.924284 0.678572 0.470508, 0.181701 0.886709 0.333868
0.780287 0.033015 0.620919, 0.859185 0.932541 0.252564
0.774645 0.083064 0.349744, 0.903457 0.888628 0.124621
0.293881 0.081041 0.053630, 0.220134 0.760599 0.688370
0.493690 0.930407 0.343378, 0.585411 0.439278 0.167284
0.648043 0.965342 0.702852, 0.219455 0.957094 0.895428
0.504966 0.639074 0.084498, 0.906610 0.508304 0.938057
0.716468 0.854022 0.986517, 0.385839 0.307391 0.681601
0.099368 0.291429 0.740170, 0.475139 0.160612 0.598743
0.252564 0.696499 0.576596, 0.788211 0.564812 0.486616
0.613177 0.259980 0.238984, 0.296858 0.344416 0.229757
0.526564 0.816547 0.598836, 0.429733 0.712523 0.742929
0.507514 0.904602 0.268688, 0.685066 0.562001 0.926251
0.614731 0.263859 0.402947, 0.432246 0.210193 0.939664
0.115992 0.498747 0.676389, 0.424152 0.141821 0.676522
0.778767 0.981750 0.935757, 0.208696 0.768371 0.292528
0.334815 0.183086 0.275601, 0.487257 0.590889 0.227333
0.975542 0.456665 0.257836, 0.577884 0.835181 0.876629
0.737370 0.699890 0.544111, 0.177496 0.781162 0.853225
0.558513 0.066648 0.194491


