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ABSTRACT

We introduce five novel types of Monte Carlo (MC) moves that brings the number of moves of

ensemble MC calculations from three to eight. So far such calculations have relied on affine invariant

stretch moves that were originally introduced by Christen (2007), walk moves by Goodman and Weare

(2010) and quadratic moves by Militzer (2023). Ensemble MC methods have been very popular because

they harness information about the fitness landscape from a population of walkers rather than relying

on expert knowledge. Here we modified the affine method and employed a simplex of points to set

the stretch direction. We adopt the simplex concept to quadratic moves. We also generalize quadratic

moves to arbitrary order. Finally, we introduce directed moves that employ the values of the probability

density while all other types of moves rely solely on the location of the walkers. We apply all algorithms

to the Rosenbrock density in 2 and 20 dimensions and to the ring potential in 12 and 24 dimensions.

We evaluate their efficiency by comparing error bars, autocorrelation time, travel time, and the level

of cohesion that measures whether any walkers were left behind. Our code is open source.

1. INTRODUCTION

Since the seminal paper by Metropolis et al. (1953), Monte Carlo (MC) techniques, in particular Markov Chain Monte

Carlo (MCMC) methods, have been employed in many areas of science including physics, astronomy, geoscience and

chemistry (Kalos & Whitlock 1986; Ferrario et al. 2006; Landau & Binder 2021). These methods are particularly

effective when states in a high-dimensional space need to be studied but only a small but nontrivial subset of the

available states are relevant. The distribution of n gas molecules in a three-dimensional room is one example to

illustrate their effectiveness. A MC simulation would only generate configurations in the 3n dimensional space in

which the molecules are more or less evenly distributed in the room, as one would expect. Formally with analytical

statistical methods, one would be required to also integrate over highly unlikely configuration, in which, e.g., many

molecules are concentrated in one corner of the room. Such states are irrelevant because they only occupy a negligible

measure of the accessible configuration space. MC methods are very good in avoiding unlikely configuration and in
sampling only a representative subset of the relevant configurations, which makes such MC method orders of magnitude

more efficient than exhaustive integration methods. Consequently, MC methods offer no direct access to the entropy

nor to free energies but these quantities can be derived indirectly via thermodynamic integration (de Wijs et al. 1998;

Wilson & Militzer 2010, 2012; Wahl et al. 2013; Gonzalez-Cataldo et al. 2014).

In the field of statistical physics, MC methods have thus found numerous applications to sample the states of classical

and quantum systems (Binder et al. 2012; Ceperley & Mitas 1995; Militzer & Pollock 2002; Driver & Militzer 2015)

that are weighted by the Boltzmann factor,

π(r⃗) = exp

{
−E(r⃗)

kBT

}
. (1)

π is the unnormalized probability density of states, r⃗, with an energy, E(r⃗). The product of temperature, T , and

Boltzmann constant, kB , controls the relative weights of high- and low-energy states. Throughout this article, r⃗ =

{r1, . . . , rN} represents a vector in the N dimensional space of states that is to be sampled. We often refer to such

vectors as walkers. r⃗i refers to the ith walker in an ensemble while when we discuss the specific sampling functions like

the Rosenbrock density or the ring potential, rm represents the mth component of a vector r⃗. It should be noted that

a walker does not play the role of a particle in physics-based MCMC calculations where typically n particles move in

3D space, which leads to a N = 3n dimensional sampling space. In such applications, one typically moves one or a
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handful of particles with specialized types of moves that are particularly efficient for specific interactions. The MCMC

methods that we discuss in this article are not focused on sampling particle coordinates but are more general. They

should for example allow one to construct ensembles of models of Jupiter’s interior for which a walker may represent

the masses and composition of certain layers Militzer & Hubbard (2024). So we do not assume that the N dimensional

sampling space can be divide into n equivalent 3D subspaces. When one moves a particle in physics-based simulations,

only its 3 coordinates change while when we move a walker here, all its N elements are affected.

Besides statistical physics, there is another broad area of applications where MCMC are typically employed. In

fields like astrophysis, one often constructs models to match sets of telescope observations or spacecraft measurements

(Hubbard et al. 2002; Bolton et al. 2017), yi, that come with a statistical uncertainty, δyi. MCMC calculations are then

used to map out the space of model parameters, r⃗, that is compatible with the observations by sampling probability

density (Militzer et al. 2019; Movshovitz et al. 2020; Militzer et al. 2022),

π(r⃗) = exp
{
−χ2/2

}
with χ2 =

N∑
i=1

(
ymodel
i (r⃗)− yobs.i

δyi

)2

(2)

The affine invariant MCMC method by Christen (2007) and Goodman & Weare (2010) along with its practical im-

plementation by Foreman-Mackey et al. (2013) have been very popular to solve such kind of sampling problems. Many

applications came from the field of astrophysics. For example, the affine sampling method has been employed to detect

stellar companions in radial velocity catalogues (Price-Whelan et al. 2018), to study the relationship between dust

disks and their host stars (Andrews et al. 2013), to examine the first observations of the Gemini Planet Imager (Mac-

intosh et al. 2014), to analyze photometry data of Kepler’s K2 phase (Vanderburg & Johnson 2014), to study the mass

distribution in our Milky Way galaxy (McMillan 2017), to identify satellites of the Magellanic Clouds (Koposov et al.

2015), to analyze gravitational-wave observations of a binary neutron star merger (De et al. 2018), to constrain Hubble

constant with data of the cosmic microwave background (Bernal et al. 2016), or to characterize the properties of

M-dwarf stars (Mann et al. 2015) to name a few applications. On the other hand, Huijser et al. (2022) demonstrated

that the affine (linear) stretch moves exhibit undesirable properties when the Rosenbrock density in more than 50

dimensions is sampled.

The MCMC in this article are not taylored towards any specific application nor do they require knowledge of any

derivitatives of the sampling function π(r⃗) because they may very difficult to compute for complex applications.

This means however that the algorithm has little information to distinguish favorable direction to move into from

unfavorable ones, and this is why one employs an ensemble of walkers.

Ensemble MC methods propagates an entire ensemble of walkers rather than moving just a single one. While this

seems to imply more work, such methods often win out because they harness information from the distribution of

walkers in the ensemble to propose favorable moves that have an increased chance of being accepted without the need

for a detailed investigation of the local fitness landscape as the traditional Metropolis-Hastings MC method requires.

Many extensions of the Metropolis-Hastings approach have been advanced (Andrieu & Thoms 2008). For example,

Haario et al. (2001) use the entire accumulated history along the Monte Carlo chain of states to adjust the shape of

the Gaussian proposal function.

Ensembles of walkers are employed in various types of Monte Carlo methods that have been designed for specific

applications. In the fields of condensed matter physics and quantum chemistry, ensembles of walkers are employed

in variational Monte Carlo (VMC) calculations (Martin et al. 2016) that optimize certain wavefunction parameters

with the goal of minimizing the average energy or its variance (Foulkes et al. 2001). Ensembles are used to vectorize

or parallelize the VMC calculations. They are also employed generate the initial set of configurations for the walkers

in diffusion Monte Carlo (DMC) simulations. In DMC calculations, one samples the groundstate wave function by

combining diffusive moves with birth and death processes. An ensemble of walkers is needed to estimate the average

local energy so that the birth and death rates lead to a stable population size. Walkers with a low energy are favored

and thus more likely to be selected to spawn additional walkers. Walkers in areas of high energy are likely to die out.

The birth and death concepts in DMC have a number of features in common with genetic algorithms that employ

a population of individuals (similar to an ensemble of walkers). The best individuals are selected and modified with

a variety of approaches to generate the next generation of individuals (Schwefel 1981; Militzer et al. 1998). The

population is needed to establish a fitness scale that enables one to make informed decisions which individuals should

be selected for procreation. This scale will change over time as the population migrates towards for favorable regions

in the parameter space. This also occurs in DMC calculations as the walker population migrates towards regions of
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low energy, the average energy in the population stabilizes, and the local energy approaches the ground state energy

of the system.

Ensembles of individuals/walkers are not only employed in genetic algorithm but are used in many different stochastic

optimization techniques. These methods have primarily been designed for the goal of finding the best state in a complex

fitness landscape, or a state that is very close to it, rather than sampling a well-defined statistical distribution function

as Monte Carlo method do. Therefore these optimization are much more flexible than Monte Carlo algorithms that

typically need to satisfy the detailed balance relation for every move (Kalos & Whitlock 1986).

The particle swarm optimization method (Kennedy & Eberhart 1997; J. Kennedy & Eberhart 2001) employs an

ensemble (or swarm) of walkers and successively updates their locations according to a set of velocities. The velocities

are updated stochastically using an inertial term and drift terms favor migration towards the best individual in the

population and/or towards the global best ever generated.

In general, efficient Monte Carlo methods are required to have two properties. 1) They need to migrate efficiently

in parameter space towards the most favorable region. The migration (or convergence) rate is typically measured in

Monte Carlo time (or steps). 2) Once the favorable region has been reached and average properties among walkers

have stabilized, the Monte Carlo method needs to efficient sample the relevant parameter space. The efficiency of the

algorithm is typically measured in terms of the autocorrelation time or the size of the error bars.

Militzer (2023a) recently introduced quadratic MC (QMC) moves and demonstrated that they are more efficient

in sampling challenging, curved fitness landscapes than linear stretch moves. Militzer (2023a) also modified the walk

move method by Goodman & Weare (2010) by adding a scale factor, which enables one to control the step size of the

moves and thus enable one to substantially increase the MC efficiency. All these method propagate an ensemble of

walkers and harness information from their location about the fitness landscape rather relying on expert knowledge to

chose the promising directions for future MC moves. The goal of this article is to add five types of novel MC moves

to the portfolio of available ensemble MC moves because so far there are only three: affine stretch moves that were

first introduced by Christen (2007), walk moves by Goodman & Weare (2010), and the quadratic moves by Militzer

(2023a). Here we also design a method to compare the efficiency of all these moves and then apply it by conducting

simulations for the Rosenbrock density in 2 and 20 dimensions and the ring potential in 12 and 24 dimensions. In

general, we do not know what types of moves will prove to be most effective when MC methods are applied to a broad

range of problems, so having access to a portfolio of MC moves may prove useful in saving computer time and thus

energy.

2. METHODS

2.1. Review of Affine, Quadratic, and Walk Moves

To move walker i from location r⃗i to r⃗′i, Goodman & Weare (2010) employed the affine invariant moves that were

originally introduced by Christen (2007). From the ensemble, one selects one additonal walker, j, to set the stretch

direction,

r⃗′i = λ(r⃗i − r⃗j) + r⃗j (3)

To make such moves reversible, the stretch factor, λ, must be sampled from the interval
[
1
a , a

]
where a > 1 is constant

parameter that we controls the step size. To sample the stretch factor, λ, one has a bit of a choice. Goodman & Weare

(2010) followed Christen (2007) when they adopted a function, PS(λ), that satisfies,

PS(λ) =
1

λ
PS(

1

λ
) (4)

PS(λ) ∝ 1√
λ
if λ ∈

[
1

a
, a

]
. (5)

The acceptance probability is given by

A(r⃗i → r⃗′i) = min

[
1,

π(r⃗′i)

π(r⃗i)
λα

]
, (6)

where the factor λα with α = N − 1 emerges because one performs a one-dimensional move to sample points in a

N -dimensions space (see derivations in Christen (2007) and Militzer (2023a)).
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Figure 1. Illustration of different types of MC moves. The affine moves from Christen (2007) and quadratic moves from
Militzer (2023a) are shown in panels A and B. The remaining panels illustrate the novel moves that we designed for this article.
Panel C shows a fourth-order move that employes four guide points while quadratic moves use only two. In panel D, we depict a
modified affine move, for which we interpolate between two walkers to obtain the guide point that defines the stretch direction.
In panels E and F, we generalize this concept by deriving the guide points by taking the center of mass from a group (or simplex)
of walkers. Finally in panel G, we illustrate our directed moves that employed the energy, y, to fit a Gaussian function in order
to sample favorable parameters regions more often. Conversely, all other moves only employ the location of the walkers but no
information about their energy. (In this article, we also test and apply walk moves from Goodman & Weare (2010) and modified
walk moves from Militzer (2023a) but we do not illustrate them here.)
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In Fig. 1, we illustrate the affine as well as the quadratic moves. For a quadratic move, Militzer (2023a) selects two

walkers j and k from the ensemble to move walker i from r⃗i to r⃗′i.

r⃗′i = wir⃗i + wj r⃗j + wkr⃗k (7)

The interpolation weights w are chosen from,

wi=L2(t
′
i ; ti, tj , tk), (8)

wj =L2(t
′
i ; tj , tk, ti), (9)

wk =L2(t
′
i ; tk, ti, tj), (10)

L2(x ; x0, x1, x2)≡
x− x1

x0 − x1

x− x2

x0 − x2
, (11)

where L2 is the typical Lagrange weighting function that guarantees a proper quadratic interpolation so that r⃗′i = r⃗i if

t′i = ti; r⃗
′
i = r⃗j if t′i = tj ; and r⃗′i = r⃗k if t′i = tk. One sets tj = −1 and tk = +1 to introduce a scale into the parameter

space, t.

To satisfy the detailed balance condition, T (r⃗i → r⃗′i) = T (r⃗′i → r⃗i), it is key that we sample the parameters ti and

t′i from the same distribution PS(t). The acceptance probability then becomes,

A(r⃗i → r⃗′i) = min

[
1,

π(r⃗′i)

π(r⃗i)
|wi|N

]
. (12)

Again a factor of |wi|N is needed because we sample the one-dimensional t space but then switch to the N -dimensional

parameter space, r⃗. In appendix of Militzer (2023a), this factor is derived rigorously from the generalized detailed

balance equation by Green & Mira (2001).

Goodman & Weare (2010) also introduced walk moves. To move walker k from r⃗k to r⃗′k = r⃗k +W , one chooses at

random a subset of walkers, S. The subset size, NS , is a free parameter that one needs to choose within 2 ≤ NS < NW

where NW is the total number of walkers. Militzer (2023a) followed Goodman & Weare (2010) in computing the

average location all walkers in the subset,

⟨r⃗⟩ = 1

NS

∑
j∈S

r⃗j . (13)

but then modifoed their formula for computing the step size, W , by introduding a scaling factor a:

W = a
∑
j∈S

Zj (r⃗j − ⟨r⃗⟩) . (14)

Zj are univariate standard normal random numbers. By setting a = 1, one obtains the original walk moves, for which

the covariance of the step size, W , is the same as the covariance of subset S. The introdcution of the scaling parameter,
a, enabled Militzer (2023a) to make smaller (or larger) steps in situations where the covariance of the instantaneous

walker distribution is a not an optimal representation of local structure of the sampling function. It was demonstrated

that the scaling factor a significantly improves the sampling efficiency of the Rosenbrock function and for the ring

potential in high dimensions.

2.2. From Quadratic to Order-N Moves

For a quadratic MC move one selects two guide points to move walker i from r⃗i to the new location r⃗′i. The new

location is generated by quadratic interpolation in parameter space t. Here we now generalize this concept to arbitrary

order, NO. At random, we first select NO guide points from the ensemble of walkers. Together with the moving walker,

we now have NO + 1 points to perform a Lagrange interpolation of order NO to derive a new location for the moving

walker, r⃗′i,

r⃗′i = wir⃗i +

NO∑
j=1

wj r⃗j . (15)

The interpolation weights, w, are given by

wi = LNO
(t′, t⃗, 0) and wj = LNO

(t′, t⃗, j) , (16)
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where t⃗ is an NO+1 dimensional vector t⃗ = {t0, t1 . . . tN} that begins with index 0. LNO
are the Lagrange polynomials,

LNO
(x, t⃗, s) =

NO∏
i=1

x− t(i+s)%(NO+1)

ti − t(i+s)%(NO+1)
, (17)

where the modular division in t(i+s)%(NO+1) guarantees that index i+ s referes to vector element ti+s if i+ s < NO +1

and to element ti+s−(NO+1) if i+ s is larger. This leads to the usual Lagrange interpolation, r⃗(t′), that goes through

all NO + 1 points so that r⃗′i = r⃗i if t
′ = t0 and r⃗′i = r⃗j if t′ = tj . For the quadratic moves in Militzer (2023a), we set

tj=1 = −1 and tj=2 = +1 to introduce a scale into the parameter space t. The t arguments for the original and new

locations, t0 and t′, are both sampled at random.

Militzer (2023a) proposed two alternative methods and sampled them either a uniform distribution from [−a,+a]

or from a Gaussian function with standard deviation σ = a that is centered at t = 0. For the acceptance probabilities,

we use again Eq. 12. For both sampling functions, the parameter a controls the average size of the MC steps in t and

r⃗ spaces. While the standard deviation of resulting t values is equal to a for the Gaussian t sampling method, it is

equal to only a/
√
3 for the linear t sampling. So the favorable ranges of a tend to be a little larger for linear t sampling

than for the Gaussian method when the best settings of a for both methods are compared for the same application,

as we will later see.

When we extend the quadratic moves to higher orders here, we still sample tj=0 and t′ as before but we need to

specify the arguments, tj>0, for the remaining interpolation points. For a third order interpolation, a natural choice

would be t1 = −1, t2 = 0, and t3 = +1. Following this concept, we distribute the t arguments uniformly,

tj>0 = 2
j − 1

NO − 1
− 1 (18)

so that tj=1 = −1 and tj=NO
= +1. We study how this MC method performs when we choose the or-

der NO = {3, 4, 6, 10} and combined it with linear and Gaussian t sampling and different values of a =

{0.1, 0.3, 0.5, 1.0, 1.2, 1.5, 2.0, 3.0}. While we see a dependence on a when we compare the performance of this method,

the performance of the linear t sampling method with the best choice a was always comparable to that of the Gaussian

t sampling method with its best a. So for simplicity we combine the results with linear and Gaussian t sampling into

one dataset when we later compare the performance this method for different orders, NO.

2.3. Directed Quadratic Moves

None of the moves in Goodman & Weare (2010) or Militzer (2023a) nor any other moves in this article make use of

the probability values of the other walkers, π(r⃗j), when a new location, r⃗′i, for walker i is proposed. Currently only

their locations, r⃗j , are employed. Some valuable information might be harnessed by utilizing that a particular walker,

k, resides in an unlikely location with a probability value, π(r⃗k), that much lower than that of the others. (One may

recall that the regula falsi method is more efficient in finding the roots of a function than the bisection method because

it makes use of the function value while the bisection method only relies on the sign of the values.)

Here we go back the quadratic moves that relies on the walker, r⃗(t0), and two guide points r⃗(t1 = −1) and r⃗(t2 = +1).

We assume their probabilities, π(r⃗(t′)), came from an energy function, E(r⃗(t′)) = −kBT ∗ log(π(r⃗(t′))). The factor

kBT may be set to 1. We further assume that we can approximate the energy function by the quadratic function,

E(t′) = At′2 +Bt′ +C, whose coefficients are chosen so that it interpolates the three known points, E(t0), E(t1), and

E(t2). If A is positive, it has a minimum at tmin = −B/2A and we can sample t′ from a Gaussian function,

PG(t
′) =

√
A

πkBT
exp

{
− A

kBT
(t′ − tmin)

2

}
(19)

with the standard deviation, σ = (2A/kBT )
−1/2

.

For the reverse move, one first needs to consider the probability of sampling t′ from the distribution, PS(t
′). To

sample t, one constructs a different quadratic function, P ′
G(t), that interpolates E(t′), E(t1), and E(t2). This introduces

an additional factor into the acceptance ratio,

A(r⃗i → r⃗′i) = min

[
1,

PS(t
′)

PS(t)

P ′
G(t)

PG(t′)

π(r⃗′i)

π(r⃗i)
|wi|N

]
. (20)
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The approach has one caveat because the interpolation coefficient, A, may occasionally become negative during the

forward or reverse move, in which case the distribution PG(t
′) cannot be properly normalized. When this happens

if first try to reorder the elements of the vector t⃗. If this is not successful we overwrite A with |A|, which leads

to a stable MC algorithm. We tested it with with linear and Gaussian sampling, PS(t) and a series of a values,

a = {0.1, 0.3, 0.5, 1.0, 1.2, 1.5, 2.0, 3.0}.

2.4. Modified Affine and Simplex Moves

Here we introduce three extensions of the affine and quadratic moves. First for our modified affine moves, we linearly

interpolate between walkers j and k to pick a direction for the stretch move of walker, i,

r⃗′i = λr⃗i + (1− λ)r⃗∗ with r⃗∗ = cr⃗j + (1− c)r⃗k , (21)

where c is a random number chosen uniformly between 0 and 1. In all other respects, the move proceeds like the

original affine move. Illustrations of this and the two following moves are given in Fig. 1.

For our affine simplex moves, we set the direction of the stretch move in yet a different way. As guide points, we

select NG walkers from the ensemble, compute their center of mass, and insert it as r⃗∗ into Eq. 21. Finally for our

quadratic simplex move, we select two separate sets of NG walkers at random and compute their respective centers of

mass before inserting them as of r⃗j and r⃗j into Eq. 7. The move then proceeds like our quadratic moves.

3. APPLICATIONS

3.1. Ring Potential

We test all our MC methods by applying them to two test problems: the ring potential and Rosenbrock density.

The ring potential is defined as,

V (r⃗) = (2m)2m

[
(ρ−R)2m +

N∑
i=3

r2mi

]
− Cr1 , (22)

where r⃗ = {r1, . . . , rN} is a vector in the N ≥ 2 dimensions. ρ =
√
r21 + r22 is the distance from the origin in the r1-r2

plane. The first term ensures that the potential is small along a ring of constant radius, R = 1. The second term

keeps the magnitude of all remaining parameters, r3...N , small. Increasing the positive integer, m, makes the walls

of the potential around the ring steeper. For this article, we performed calculations with N = 12 and 24 dimensions

while keeping m = 6 fixed. The last term breaks axial symmetry. We set C to small value of 0.01 so that the

potential minimum is approximately located at point A⃗ = (+R, 0, . . .) while the potential is raised at opposing point

B⃗ = (−R, 0, . . .). Figure 3 of Militzer (2023a) shows an illustration of this effect. The prefactor of the first term in

Eq. 22 is introduced so that the location of potential minimum does not shift much with increasing m.

We employ the Boltzmann factor, Eq. 1, to convert the energy of the ring potential into a probability function that

we can sample. We set kBT = 10−4 so that the equilibrium distribution is reasonably well confined around point A⃗.

So when we compute the autocorrelation time and the blocked error bar (Allen & Tildesley 1987) of the potential

energy, we initialized the ensemble of walkers around this point. When we want to determine how long it takes the

ensemble of walkers to travel around the ring, we initialize the ensemble near the high-energy point, B⃗. We define the

travel time to be the number of MC moves that are required for ensemble average of ⟨r1⟩ to change sign from negative

to positive. Based on such a travel time analysis, Militzer (2023a) concluded that employing between 2N + 1 and

3N + 1 walkers was a reasonable ensemble size while it took larger ensembles a disproportionally long time to travel

around the ring.

The ring potential also allows to define and study the cohesion among an ensemble of walkers, which is relevant

because all MC methods in this article perform local moves that rely on information of walkers in the ensemble. This

means that if the walkers have split up in a highly dimensional and fragmented fitness landscape, or it were initialized

that way, it will be challenging to reunited the walkers later. This will likely to lead to a degradation of performance

because a distant walker cannot provide useful guidance for a local move. Therefore, we consider cohesion among the

walkers to be a favorable trait of an ensemble MC algorithm.

For the ring potential, we define cohesion in the following, simple way. As for the travel time calculation, we initialize

the ensemble near the high-energy state of point B⃗ and then monitor whether all walkers find to their way to the
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Figure 2. To illustrate different degrees of cohesion, we plot the r1 coordinate of all walkers at the end of every block. To
compare the affine and QMC methods, we initialized two ensembles of NW = 24 walkers near the high energy state of r1 = −1
and monitored how long it took the ensemble to travel to the prefereed low-energy state at r1 = +1 and whether the ensemble
remained together. The QMC ensemble traveled faster and walkers kept together. Conversely, the affine ensemble traveled a
bit more slowly and split up so that only 17 of the 24 walkers arrived at the low-energy state.

low-energy state near point A⃗. Cohesion is defined by the fracton of walkers with r1 ≥ 0 at the end of the MC

calculation. This average could in principle depend on the duration of the MC calculations but Fig. 2 provides an

illustration why this dependence is weak. Conservatively, we end our MC calculations after they completed enough

moves equal to twice the ring travel time.

To demonstrate why it is informative to compare the walker cohesion between different MC algorithms, we plot

the r1 coordinates of all walkers at the end of every block in Fig. 2. For the ring potential in N = 12 dimensions,

we initialized two ensembles of with NW = 24 walkers near r1 = −1 and propagated them with our QMC and with

the affine methods. The QMC ensemble remained together and traveled more efficiently towards the low-energy near

r1 = +1. The affine ensemble traveled more slowly and split up so that only 17 out of 24 walkers reached the low-

energy state. A careful inspection of the first 2000 blocks reveals that even some walkers in the QMC ensemble fell

behind but eventually they all caught up. Still one may not expect the QMC ensemble to show perfect cohesion in all

circumstances especially if sampling parameters are chose poorly. While Fig. 2 shows just one calculation, we always

average the cohesion and the travel time over 1000 independent MC calculations when we compare prediction from

different MC moves and parameter settings in this article.

3.2. Rosenbrock Density

Goodman & Weare (2010) tested their methods by sampling the 2d Rosenbrock density,

π2d(r1, r2) = exp [R(r1, r2)] with R(r1, r2) = −
A
(
r2 − r21

)
+ (1− r1)

2

B
, (23)
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which carves a narrow curved channel into the (r1, r2) landscape. B effectively plays the role of temperature while A

controls the width of the channel. Here we set A = 100 and B = 5 to be consistent with Goodman & Weare (2010).

There are three different ways one can generalize the Rosenbrock density to higher dimensions. First one can simply

treat it as N/2 independent 2d Rosenbrock problems by setting,

πsimple(r⃗) = exp

N/2∑
i=1

R(r2i−1, r2i)

 . (24)

Alternatively one can “connect” the individual coordinates by defining,

πconnected(r⃗) = exp

[
N−1∑
i=1

R(ri, ri+1)

]
. (25)

Finally one can make the problem periodic by also connecting the coordinates r1 and rN ,

πperiodic(r⃗) = exp

[
N∑
i=1

R(ri, r1+i%N )

]
. (26)
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Figure 3. Autocorrelation time and energy error bar that were computed with a variety of MC moves for the three types of
Rosenbrock functions in ten dimensions. The plot reveals that the simple Rosenbrock function is most challenging to sample.
For this reason, we focus on this function when we compare the performance of different MC methods in all following figures.

In Fig. 3, we compare error bars and autocorrelation times that we computed with all the different MC moves and

parameters that we described in Sec. 2 for these three types of Rosenbrock densities in N = 10 dimensions. We find
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that the simple Rosenbrock density to be the most challenging one to sample because it leads to the largest error bars

and the longest autocorrelation times. Since we are interesting here in designing algorithms that can solve challenging

sampling problems, we focus all following investigations on the simple Rosenbrock density and exclude the two others

from further consideration. The simple Rosenbrock density was also studied Huijser et al. (2022) who demonstrated

that the affine invariant method exhibits undesirable properties in more than 50 dimensions.

Our code is open source. Examples and installation instruction are available here: Militzer (2024). A simpler source

code for our quadratic Monte Carlo method is available here: Militzer (2023b).

4. RESULTS

In this section we compare the efficiency of all types of MC moves for different sampling parameters, one being the size

the ensemble, NW . After Militzer (2023a) demonstrated that setting NW larger than 3N+1 leads to disproportionally

long travel times, we conduct simulations with NW = {N + 2, N + 3, N + 4, 3N/2, 2N + 1, 3N + 1} for all method.

For the affine and the modified affine methods, we conducted simulations with a = {1.2, 1.5, 2.0, 2.5}. For the affine

simplex method, we combined these four a values with using NG = {3, 4, 5, 6, 10} guide points to construct the simplex,

which brings the number of separate calculations to 20 for this method.

For the quadratic MC method with linear and Gaussian t sampling, we performed simulations for a =

{0.1, 0.3, 0.5, 1.0, 1.2, 1.5, 2.0, 3.0}. We use the same set of a values to conduct higher-order simulations with NO =

{3, 4, 6, 10}, again with both types of t sampling. Finally we combined these eight a value with NG = {3, 4, 5, 6, 10}
guide points to conduct simulations with the quadratic simplex and with the walk method.

This typically led 1224 separate MC calculations for a particular problem and a given dimension. For N = 2

dimensional Rosenbrock density, this only led to 508 separate MC simulations because in some cases, the number of

walkers was too small to allow one to chose the specified number of guide points.

4.1. Rosenbrock results

In Figs. 4 and 5, we respectively compare the results from different MC sampling methods for the Rosenbrock

function in N = 2 and 20 dimensions. In Fig. 6, we show similar results for the ring potential in N = 24. We also

computed results for N = 12 dimensions but we do not provide a plot here because they are very similar, with one

exception: The order 3 results did not lag behind the QMC results in N = 12 case as they do for N = 24 in Fig. 6.

One sees the same trend if one compares the N = 2 and 20 results for the Rosenbrock function.

For any application of MC methods, one wants the autocorrelation time and computed averages as small as possible.

We compute both for the energy because this is the central quantity of many physical system. The results from

different sampling methods are compared in panels (a)-(d) in Figs. 4, 5, and Fig. 6. For the ring potential, an efficient

algorithm should fulfill two additional criteria: It should travel efficiently from unfavorable to favorable regions of the

parameter space and exhibit a high level of cohesion. Both are plotted in panels (e)-(h) of Fig. 6.

The QMC method with linear and Gaussian t sampling yield very good results across all panels in Figs. 4, 5,

and 6 but there is also quite a bit of variance among the predictions. So with the following discussion, we identify
favorable choice for the different sampling parameters and compare for the two applications with goal of identifying

some reasonable default settings for future applications.

For Rosenbrock function in N = 2 dimensions, the QMC method with linear t sampling works well if the scaling

parameter a is set between 1.0 and 3.0 for any number of walkers between 3 and 7. If a is chosen poorly between

0.1 and 0.5, the energy error bar and autocorrelation time increase drastically, which is the trend we see in Fig. 4a.

Similarly, the QMC method with Gaussian t sampling works well for a value between 0.5 and 3.0 and not so well for

a = 0.1 and 0.3.

If we increase the number of dimensions from 2 to 20, the favorable parameter ranges are slightly modified. The

QMC method with linear t sampling works well if a is set only between 0.3 and 1.0 but not so well for larger a values,

nor for a = 0.1. The QMC method with Gaussian t sampling works well for a values between 0.1 and 0.5 but not

so well for larger a values. As one increases the dimensionality of the Rosenbrock density, sampling the search space

becomes more challenging (Huijser et al. 2022) and one needs to make smaller steps to still move efficiently.

When we compare the performance of the QMC method with linear t sampling for the ring potential in N = 24

dimension, we find the method to yield small error bars, short autocorrelation and travel times as well as a high level

of cohesion of over 90% if a is set between 0.3 and 0.5 for between 26 and 73 walkers.

For a = 1.0, the method works well for between 27 and 49 walkers. If we switch to Gaussian t sampling, a values

between 0.1 and 0.5 yield favorable results. The QMC simplex method yields results that are very similar to that of
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Figure 4. Autocorrelation time and energy error bar that were computed for the Rosenbrock function in two dimensions. The
four panels compare the performance of different MC methods and sampling parameters (see text). Results from our QMC
method with linear sampling in t space are repeated across all panels to simplify the comparison. To keep this and all following
figures simple, we combine results of the higher-order method that were obtained with different a values and with linear or
Gaussian t sampling into a single dataset for a given order, NO.

the original QMC method as Figs. 4, 5, and 6 show consistently. This also means that these test cases did not reveal

any particular advantage of this method.

We find that the affine invariant method does not perform as well as the QMC method for all three test cases. It lags

behind by factors between 2 and 4 behind the best QMC results as panels (b) of Figs. 4, 5, and 6 show. We obtained

the best results for the ring potential by setting a = 1.2 and using between 28 and 73 walkers. For these simulations,

the cohesion level varied between 80 and 97% (see Fig. 6f). For the Rosenbrock density in 2 and 20 dimensions, we

needed to set a to 2.5 and 1.2 respectively to obtain the best results. This confirms the trend that sampling the N = 20

space efficiently requires smaller steps.

Our modification to the affine method did not yield any improvements. In Figs. 5 and 6, it slightly lags behind the

original affine method while Figs. 4 shows the autocorrelation time for the 2d Rosenbrock density is about twice as

long. The affine simplex performed yet a bit worth. It lagged behind the other affine methods in term of the travel

time and cohesion as Fig. 6f shows.

4.2. Ring potential

We obtained the best results for the ring potential in N = 24 dimensions in Fig. 6 when we employed the QMC

method with linear t sampling with a = 0.3 . . . 0.5 and Gaussian t sampling with a = 0.1 . . . 0.3. Using between 27 and

73 walkers gave consistently good results. In comparison, the quadratic simplex method did not quite perform as well

for any sampling parameters.

Affine and modified affine methods did slightly worse than the quadratic simplex method. The autocorrelation time,

error bars, and travel times were not as good and the cohesion varied substantially between 50% and 95% (see Fig. 6b

and f). The best choice for the a value was 1.2. The affine simplex method performed poorly on all counts.
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Figure 5. Autocorrelation time and energy error bar that were computed for the simple Rosenbrock function in twenty
dimensions. Like in Fig. 4, the four panels compare the performance of different MC methods. Results from our QMC method
with linear sampling in t space are again repeated across all panels for the comparison.

In Fig. 6c and g, we compare results from interpolations with different orders. Some simulations of fourth and

sixth order performed well if we set a to 0.1 or 0.3. In comparison, calculations of third and tenth order were not

competitive.

In Fig. 6d and h, we compare results obtained with the directed quadratic method and with walk moves. With the

directed quadratic method, we obtained the best results by setting a to 0.3 and 0.5 but they were not as good as those

from original quadratic method. On the other hand, the results from the walk method were consistent better as long

as we set the scaling parameter a to 0.1 or 0.5, which underlines the importance this parameter that was introduced

only recently by Militzer (2023a).

4.3. Relative Inverse Efficiency

The preceeding analysis relied on a detailed comparision of results spread across three figures. So here we introduce

the relative inverse efficiency to greatly simplify the comparison of different methods across various applications. Such

an efficiency measure should be able to handle the noise that we see in Figs. 4, 5, and 6. Furthermore, one cannot

expect that adjustable parameters like a and NW have been optimized to perfection. Instead it should be sufficient to

have results for good number of reasonable a and NW values in the dataset. Also a method should not be penalized

very much if in addition to results for reasonable parameters there are also some findings for unreasonable values like

a = 3 in the dataset. Finally if a method like the modified walk method has more adjustable parameters and more

calculations have been performed, this should not lead to an advantage over other methods that have fewer adjustable

parameters. With these tree goals in mind, we define the relative inverse efficiency to be the ratio, A/B. For given

application (e.g. the Rosenbrock density in 2 dimensions), we sort all autocorrelation times obtained with all methods

and all parameters by magnitude and then compute the average time of the best f = 20% results to obtain B. (This

value would not change if a completely useless method were to be added to the dataset.) We derive A by averaging
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Figure 6. Simulation results for the ring potential in N=24 dimensions. In the upper four panels, we compare the energy
autocorrelation time and error bar from different sampling methods while we plot the cohesion and travel time results in lower
panels.
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Figure 7. The relative inverse efficiency (see text for definition) is shown for one MC method per panel. The four groups of
vertical bars respectively show results from calculations for the simple Rosenbrock density in 2 and 20 as well as for the ring
potential in 12 and 24 dimensions. The grey and blue bars represent the squared error bars and autocorrelation time of the
computed energy. For the ring potential was also show the ensemble travel time arround the ring as well as the inverse of the
ensemble cohesion so that small Y values imply a high efficiency in all cases. The QMC method with linear and Gaussian t
sampling demonstrated a high efficiency overall. The modified walk method performed better for the ring potential but did not
yield competitive results for the Rosenbrock density. The yellow and grey backgrounds label methods that reported in Militzer
(2023a) and Goodman & Weare (2010), respectively.

the best 20% result derived with one particular method only. Employing the fraction f of the results rather than

single data points helps reduce the effect of the noise and it favors methods to yield good results over a wider range

of parameters, which is helpful for real challenging application for which one may not be able to perform many test

calculations. The ratio, A/B, is thus a measure how a particular method compares to the best of its peers. In Fig. 7,

we plot a relative inverse efficiency for twelve MC methods and four applications. We not only computed it for the

autocorrelation time but also for the squared error bar of the energy and for the ring potential, also for the ring travel

time and inverse of the cohesion so that small values of all four measures imply a high level of efficiency. (Setting

f = 10% did not yield any meaningful change.)

Fig. 7 illustrates that the QMC method with linear and Gaussian t sampling has the highest efficiency overall, which

is consistently above average. The performance of the QMC simplex method is also very good but it does not do quite

as well for the ring potential. Fig. 7 also illustrates that the original affine method nor its modified or simplex forms

can compete with the QMC method. The efficieny is lower by factors between 2 and 10.

Furthermore Fig. 7 shows that increasing the interpolation order from 2 (QMC) to 10 leads to a gradual decrease

in efficiency but this trend has one exceptions. The fourth-order method does notable better than the third-order

method, which only does well for the Rosenbrock density in 2 dimensions.

The directed QMC method does very well but, for the four applications presented here, it does not offer any

improvement over the original QMC method. Finally the modified walk method does markedly better than the QMC

moves for the ring potential according to all four efficiency criteria but it does not sample the Rosenbrock density very

well.

5. CONCLUSIONS

The work by Goodman & Weare (2010) along with the practical implemenation by Foreman-Mackey et al. (2013)

made ensemble Monte Carlo calculations hugely popular. Rather than relying on expert knowledge or on specific

properties of the fitness landscape to be sampled, the algorithm harnesses information from the location of other

walkers in the ensemble when moves are proposed. Goodman & Weare (2010) employed the affine invariant stretch

moves from Christen (2007) but also introduced walk moves. Militzer (2023a) recently modified the walk moves by

introducing a scaling factor, which made the sampling of challenging fitness landscape more efficient by giving users



Novel Monte Carlo Moves 15

some control over the size of the moves. Furthermore Militzer (2023a) introduced quadratic MC moves and showed

that it greatly improves the sampling of the Rosenbrock function and a ring potential because the linear stretch moves

of the affine invariant method are not optimal for curved fitness landscapes. This had brought the number of ensemble

MC moves to three: affine stretch moves, walk moves, and quadratic moves. Here are added five novel types of moves

that we illustrated in Fig. 1. We introduced modified affine moves and affine simplex moves. We added quadratic

simplex moves but more importantly generalized the quadratic moves to arbitrary interpolation order. While we had

success with the forth-order method, our analysis also showed that increasing the interpolation order do not improve

the sampling efficiency of the Rosenbrock and ring potential functions. This conclusion is based on a relative inverse

efficiency measure that enables us to automatically compare sets of results from different MC methods.

Besides requiring that a MC method leads to small error bars and short autocorrelation times, we also require the

ensemble to travel efficiently from unfavorable to favorable region of the ring potential fitness landscape while leaving

no walkers behind, which we measure in terms of cohesion. With this measure, we showed that the affine method is

more proning to leaving walkers behind than the quadratic method.

Finally, we introduced the directed quadratic moves, which differs from all other moves because we use the probability

values in addition to the location of the walkers, which is the sole piece of information that the other moves rely on.

The overall goal of this manuscript is to broading the portfolio from three to eight types of moves, that the popular

ensemble MC methods rely on. We provide our source code so that all moves can be inspected and their performance

be analyzed for other applications.

Not surprisingly, we find that there is no single MC method that yields the best results in all situations. Furthermore,

we confirmed that all types of moves require at least an adjustment of a scaling parameter, that controls the average

step size, for the MC process to run efficiently. There appears to be no perfect setting of sampling parameters that is

optimal for all problems.

If resources are very limited, we recommend comparing our quadratic moves and modified walk moves for a =

{0.5, 1.0, 1.5} and then refining the choice for a in case various values yield very different levels of efficiencies. Once a

baseline case has been established and resources are available, we recommended testing our directed quadratic method

as well as our fourth and sixth order methods for parameters we discuss in section 4. In our experience, it is sufficient

to conduct such tests by choosing just one value for the number of walkers between 2N + 1 and 3N + 1. Then one

should compare the resulting blocked error bars and auto correlation time for quantities of high interest. Furthermore

one might want to check whether any walkers were stuck in unusual parameter regions (cohesion).

This work was supported by the Department of Energy-National Nuclear Security Administration (DE-NA0004147)

via the Center for Matter at Extreme Conditions and by the Juno mission of the National Aeronautics and Space

Administration.
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