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Path integral Monte Carlo (PIMC) simulations are a powerful computational

method to study interacting quantum systems at finite temperature. In this work,

PIMC has been applied to study the equilibrium properties of hot, dense hydrogen in

the temperature and density range of 5000 ≤ T ≤ 106K and 10−3 ≤ ρ ≤ 2.7 gcm−3.

We determine the equation of state (EOS) and the high temperature phase dia-

gram. Under these conditions, hydrogen is a dense fluid that exhibits a molecular,

an atomic and a plasma regime at low density. A high density, it is predicted to go

into a metallic state. The determination of these properties has direct application to

the understanding of brown dwarfs and Jovian planets.

The restricted PIMC method relies on a nodal surface, taken from a trial density

matrix, in order to deal with Fermi statistics. The PIMC method has been applied

extensively using free particle nodes. In this work, we develop a variational technique

that allows us to obtain a variational many-body density matrix (VDM). In a first

application to hydrogen, we derive a VDM that describes the principle physical effects

in high temperature hydrogen such as ionization and dissociation.

In the PIMC simulation, we employ this more realistic density matrix in order to

replace the free particle nodes and study the effect on the derived thermodynamic

properties. The modifications are particularly significant at low temperature and high

density where PIMC using free particle nodes have suggested a first order plasma

phase transition. We critically review these findings and show improved results from

simulations with VDM nodes.

The recent laser shock wave experiments are of particular relevance to this research

because they represent the first direct EOS measurements in the megabar regime.

We estimate the shock Hugoniot from the calculated EOS and compare with the

experimental findings. We study finite size effects and the dependence on the time

step of the path integral and on the type of nodes.

Furthermore, we extend the restricted PIMC method to open paths in order to

determine off-diagonal density matrix elements and apply this method to the momen-

tum distribution of the electron gas and to the natural orbitals in hydrogen.
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Chapter 1

Introduction

Hydrogen is the most abundant element in the universe. Its properties are crucial for

the evolution of stars and the characteristics of the Jovian planets (Jupiter, Saturn,

Uranus, and Neptune). Despite the simple composition, its phase diagram is sur-

prisingly complex and has been the topic of numerous experimental and theoretical

approaches. Many of them were devoted to the high-temperature phase diagram,

which is the subject of this work. At high temperature (T > 5000K), hydrogen is

a dense, hot fluid that undergoes considerable structural changes. At low density

(ρ ≤ 0.3 gcm−3), one finds a plasma of free electrons and protons, an atomic and a

molecular regime, while at high density hydrogen is expected to go into a metallic

state. This transition has first been predicted by the pioneering work of Wigner and

Huntington (1935) for T = 0. Several attempts have been made to observe this tran-

sition experimentally. Diamond-anvil measurements (Silvera and Pravica, 1998; Mao

and Hemley, 1994) have reached pressure up to 100 GPa at room temperature and

shock wave experiments (Da Silva et al., 1997; Collins et al., 1998) achieved up to 390

GPa at much higher temperature (T <
∼ 105K). To date, no conclusive observation of

metallic hydrogen has been made. However, in the gas gun shock wave experiments

by Weir et al. (1996) reaching 140 GPa at T < 5000K, a drop an increase in the

conductivity over 4 orders of magnitude has been found, which is an indication that

a metallic or nearly metallic state has been reached.

The simplicity of hydrogen also provides an uncluttered problem for theoretical

consideration and computational methods. The main challenge lies in the complex

interplay of different physical effects. Any theoretical approach must deal with strong

coupling, degeneracy effects as well as with bound states. In this work, we apply

path integral Monte Carlo simulations (PIMC) (Ceperley, 1995), a first principles

simulation technique that describes all the mentioned effects. The main purpose of
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this work is to provide accurate numerical results for the equilibrium properties of

hot, dense hydrogen. This topic has be studied extensively using various form of free

energy models (see section 1.4). They inevitably require a number of uncontrolled

approximations including fit parameters but have the advantage of low numerical

requirements and that additional physical observables can be estimated that are not

available in PIMC. With our PIMC simulation, we will provide an accurate equation

of state table. One purpose would be that free energy model can be fit to it.

Furthermore, we use our equation of state to calculate the deuterium hugoniot,

which can be directly compared to the above mentioned shock wave experiments.

Since they provide this first direct measurements in this regime, the comparison is of

particular significance to this work and will be discussed in detail in section 4.6.

1.1 The High-Temperature Phase Diagram

At the beginning, we will introduce the standard set of parameters used to describe

plasmas and fluids. The degeneracy parameter θ is defined as the ratio of the tem-

perature to Fermi temperature,

θ = T/TF with EF ≡ kBTF (1.1)

where the Fermi temperature is taken from an ideal quantum gas of electrons in two

spin states in D = 3 dimensions,

EF = λ (3π2n)2/3, (1.2)

where n = N/V
¦

is the density of N atoms in the volume denoted by V
¦

. Fermionic

effects become important at sufficiently low temperature when θ <
∼ 1. The density is

often discussed in terms of the parameter

rs =
a

a0
,

4

3
πa3 = n−1 , a0 = ~2/mee

2 , (1.3)

where a0 denotes the electron Bohr radius and a the Wigner-Seitz radius. The cou-

pling parameter Γ describes the ratio of potential energy and kinetic energy,

Γ =
e2

4πε0

1

akBT
. (1.4)

Small values of Γ such as Γ <
∼ 0.1 describe a weakly coupled plasma, in which the

Coulomb interaction can be treated as a correction to the dominating kinetic effects.

In this limit, the Debye screening model in appendix C gives a reliable description.
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Figure 1.1: Hydrogen phase diagram as function of temperature vs. mass density.
The solid lines show phase boundaries belonging to discontinuous transitions while dash-
dotted lines represent continuous transitions that were estimated from PIMC simulations.
Controversial is the nature of the transition from the molecular to the metallic fluid.
The PIMC simulations by Magro et al. (1996) have suggested a first order plasma phase
transition. At zero temperature, a first order transition from the molecular to the metallic
solid has been predicted by Ceperley and Alder (1987). The gas-liquid coexistence region
(shaded area) with the critical point CGL and gas-liquid-solid triple point TGPL were taken
from Kitamura and Ichimaru (1998).

The hydrogen phase diagram Fig. 1.1 was designed to show the various regimes

of hydrogen and discuss the principle physical effects. It should be noted that several

regions are not yet well understood e.g. how the high temperature results at 5000 K

connect up to the room temperature regime. We used our estimates from PIMC

simulations and extrapolated into different directions. In our approach, we do not

consider relativistic effects, which become important when the thermal energy or the

Fermi energy become of the order of the rest mass energy of the electron, which
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corresponds to a temperatures of 4× 109K and a density of 1.5× 103 gcm−3.

In the low density and low temperature region of the phase diagram, hydrogen is

composed of neutral species. Molecules dominate at low temperature (T < 104K),

which dissociate into atoms with increasing temperature. If the temperature is in-

creased further atoms become gradually ionized and a plasma of unbound electrons

and protons is generated. Above the temperature corresponding to the binding en-

ergy of 1 Ry (157 887K) the probability for the occupation of bound states goes to

zero.

Similarly in the limit of very high density, bound states cannot exist because the

degeneracy effects dominate. There, delocalized states have a smaller energy than an

antisymmetric combination of bound orbitals. This regime is expect to prevail when

the Fermi energies become of the order 1 Ry. However, it should noted this represents

a extremely simplified calculation and that the precise value probably lies significantly

over 1Ry. In the high-density limit, the electrons also form a rigid background and

hydrogen behaves like a one-component plasma of ions with neutralizing background.

In the phase diagram, we label this state as metallic fluid because the electrons behave

like a degenerate Fermi gas and the estimated conductivity is high. The degeneracy

also distinguishes this regime from the plasma state. We observed a continuous

transition between the two regimes.

In the phase diagram, the region of PIMC simulations from this work combined

with earlier ones by Pierleoni et al. (1994) and Magro et al. (1996) has been indicated.

The region is of particular interest because there hydrogen is characterized by strong

coupling, a substantial degree of degeneracy, but also by the formation of atom and

molecules. It is very difficult to design a chemical model (see section 1.4) that includes

all of the mentioned effects in a reliable approximation. In particular the interaction

of neutral species with charged particles has been proven to be rather complicated.

The advantage of the PIMC technique is that it is a quantum-statistical method,

which includes all the mentioned effects just by considering protons and electrons

interacting via the Coulomb potential. The method is exact except for requiring a

nodal surface in order to deal with the fermion sign problem. In this work, we will

derive a variational density matrix (VDM) that allows us to replace free particle nodes

by a density matrix that includes interactions and bound states. It was found that

the type of nodes begin to have a noticeable effect on the derived thermodynamic

quantities for θ <
∼ 0.15.

Furthermore, there are also some practical limitations that put a limit on the

applicability of the PIMC method in its current implementation, which originate
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from the available computational resources. For example, it has been proven to be

difficult to go below temperatures of 5000 K because this would require paths with

more 200 time slices in order to describe the formation of molecules accurately. Also

the fermion nodes can reduce the efficiency for very high values of the degeneracy.

Currently we are able to study hydrogen for θ >
∼ 0.034. For very low density, the

MC efficiency is reduced because particles rarely collide. This is also the case for

PIMC but this limit has not been reached for rs = 14. The reason why we have

not performed simulations at higher temperature or lower density is that analytical

models are expected to work very well in the regime of weak coupling.

The phase diagram also shows a region where the four discussed regimes: molec-

ular, atomic, metallic fluid and plasma meet approximately. The region continues to

be controversial. Many models have predicted a first-order plasma phase transition

(PPT) with critical point and coexistence region of two fluids characterized by differ-

ent degrees of ionization and densities. This existence of a PPT was first mentioned

in a phase diagram by Landau and Zeldovich (1943). First calculations have been

made by Norman and Starostin (1968) and Ebeling and Sändig (1973). Since then

the research community has been divided. A number of different free energy models

such as those by (Saumon and Chabrier, 1992; Kitamura and Ichimaru, 1998; Beule

et al., 1999) predict a PPT. The exact location of the critical point and the coex-

istence region differ considerably. Other models show continuous transitions (Ross,

1998).

Also in the PIMC work by Magro et al. (1996), a first order phase transition

between the molecular to a metallic phase was predicted. These predictions will be

critically reviewed in this work. It will be discussed what effect the free particle nodes

and the time step have on the nature of the transition.

The gas-liquid coexistence regime with the critical point and gas-liquid-solid triple

point were taken from the work by Kitamura and Ichimaru (1998). The first order

phase transition from molecular to metallic hydrogen was calculated by Ceperley

and Alder (1987). From the work by Ceperley and Alder (1980) it is known that the

Wigner crystal of electrons melts at rs = 100. Similarly any solid structure of protons

must become unstable if the proton parameter r
[p]
s = rsmp/me reaches 100. That is

the reason why the melting line of the metallic solid must decrease with temperature

in the limit of high density.

Furthermore, it should noted that there exist different molecular phases in solid

hydrogen at about 1 Mbar (rs ≈ 1.5), which have been studied intensely using di-

amond anvil cell experiments (Silvera and Pravica, 1998; Mao and Hemley, 1994)
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as well as with various simulation methods (Kitamura et al., 2000; Cui et al., 1997;

Surh et al., 1997). The phases are labelled I, II and III and correspond to different

orderings of the molecules in the crystal. Phase I is characterized by free rotation

of the molecules represented by an angular momentum state J = 0. In Phase III,

the rotational degree of freedom are frozen in and one refers to it as a state of clas-

sical orientational ordering. Phase II is believed to be distinguished by the ordering

angular momentum states.

1.2 Astrophysical Relevance

Giant planets and brown dwarfs consist of more than 90% hydrogen. The same hy-

drogen content is found in main sequence stars in the initial phase when they formed

by the collapse of hydrogen clouds. Then nuclear reactions reduce the fraction of

hydrogen in the process of stellar evolution. The high content of hydrogen is the rea-

son why the high temperature equation of state is relevant for the static properties of

these objects and why they enter into models that determine their evolution (Burrows

et al., 1997). In these model, one assumes a well mixed state that corresponds to an

isentropic change of state from core to surface.

In Fig. 1.2, curves from models for the interior of Jupiter and different stars

are shown. The gaseous envelope of Jupiter is dominated by molecules. Further

inside, pressure and density are sufficiently high that one can expect to find metallic

hydrogen. If there existed a PPT, there would be a critical radius, at which the

density is discontinuous. The two phases would have different properties such as the

solubility of helium. As a consequence, helium would primarily be concentrated in

one of the two phases.

The other curves in Fig. 1.2 represent stars with 0.3, 1, and 15 solar masses

(M¯). The low mass star of 0.3M¯ exhibits a complex change of properties. Near

its core, one finds a moderately degenerate plasma (θ = 1). With increasing radius,

the temperature decreases, which increases the coupling and promotes recombination

processes. Eventually, all free electrons will be bound in atoms, which leads to a

non-degenerate atomic fluid. Near the surface, the temperature will be low enough so

that molecules can form, which at some point will become the predominant species.

The sun is hotter and less dense. Near the core, it is weakly coupled and mod-

erately degenerate. The coupling parameter stays approximately constant (Γ ≈ 0.1).

Near the surface, the temperature is reduced to about 104K, recombination takes

place and atoms are formed.
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Figure 1.2: Hydrogen phase diagram as displayed in Fig. 1.1 showing the equation of
state for different stars and giant planets (Saumon et al., 1995). The dashed line indicates
where the radiation pressure equals the gas pressure. The solid lines correspond to Jupiter
and stars having 0.3, 1, and 15 times the mass of the sun.

For a more massive star of 15M¯, the modeling is simpler because it remains in

a weakly coupled and hardly degenerate regime. However, the radiation leads to a

significant contribution to the pressure. Brown dwarfs occupy the region between the

curves of Jupiter and the 0.3M¯ star.

1.3 Experimental Applications

Figure 1.3 shows different areas of laboratory application of various types of plasmas,

which are spread over a large temperature and density interval. For this work, the

laser shock wave experiments by Da Silva et al. (1997) and Collins et al. (1998) are

most relevant since they were the first direct measurements of the hydrogen equation

of state in the megabar regime. A detailed comparison will be performed in section 4.6.

Earlier gas gun experiments by Nellis et al. (1983), Holmes et al. (1995), and Weir

7



10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ρ (gcm
−3

)

10
2

10
4

10
6

10
8

T (K)

Metallic Fluid

Plasma

Tokamak

Stellarator

Atomic Fluid

θ=
1

Γ=1Capillary

Discharges

ICF
Laser−Target

Interaction

PIMC

ARCS

Ballistic 

Compressors
Wire

Explosions

Shock Waves

Γ=10
−4

Γ=0.01

Laser

Shock Waves

Gas GunMolecular Fluid

100 10 1
rs1000

Figure 1.3: Plasma phase diagram as displayed in Fig. 1.1 showing different areas of
application of plasmas as suggested by Ebeling et al. (1996)

et al. (1996) did not reach temperatures over 5000K and therefore the comparison is

only based on an extrapolation our data. The wire explosion experiments in Fig. 1.3

are only applicable to materials a wire can be made of.

1.4 Free Energy Models

There are two conceptually different approaches to describe hydrogen and related ma-

terials. One method is based on the physical picture where one treats the fundamental

particles, in this case electrons and proton, individually and compound particles such

as atoms and molecules are formed if the fundamental particle are bound together.

In PIMC, this approach is used, which has the advantage that one can build a sim-

ulation from first principles that allows one to describe regimes where one has a

mixture of different species without any additional assumptions. However, it should

be noted that the computational requirements are orders of magnitude higher than
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in the chemical models described in the following.

In the chemical picture, one assumes different chemical species. For hydrogen one

usually considers molecules (H2), atoms (H), free protons (p), and electrons (e). Other

species such as H+2 , H
−
2 or H− are neglected, because their binding energies are very

small compared to the thermal energy. For the chemical species under consideration,

one constructs a free energy function with the particle numbers NH2 , NH, Np, and Ne

as parameters.

F (V
¦

, T,NH2 , NH, Np, Ne) = F id0 (V
¦

, T,NH2 , NH) + F id± (V
¦

, T,Np, Ne)

+ F int0 (V
¦

, T,NH2 , NH) + F int± (V
¦

, T,Np, Ne)

+ F int(V
¦

, T,NH2 , NH, Np, Ne) , (1.5)

where the superscripts id and int denote the ideal contribution from non-interacting

particles and the part caused by the interactions. The interaction terms are derived

from known analytical expressions or from computer simulations. The subscripts 0

and ± refer to neutral and charged. Introduce the total particle number,

N = 2NH2 +NH +Np with Np = Ne , (1.6)

one can define the number concentration xi = Ni/N . The free energy is maximized

with respect to the chemical composition under fixed external conditions, here temper-

ature and volume. This lead to the condition for chemical equilibrium of dissociation

H2 ­ 2H and ionization H­ p + e:

∂F̃

∂xH2

∣

∣

∣

∣

∣

xH,V
¦
,T,N

=
∂F̃

∂xH

∣

∣

∣

∣

∣

xH2
,V
¦
,T,N

= 0 (1.7)

with F̃ (V
¦

, T,N, xH2 , xH) = F (V
¦

, T,NxH2 , NxH, Np = N [1− 2xH2 − xH], Ne = Np). In

terms of the chemical potentials,

µi =
∂F

∂Ni

∣

∣

∣

∣

V
¦
,T,Nj 6=i

(1.8)

chemical equilibrium is obtained from,

µH2 = 2µH , µH = µp + µe . (1.9)

Chemical models are known to work very well in regimes of weak interaction between

the different species. This is usually called the Saha limit because the ideal Saha

equation (Fowler and Guggenheim, 1965), which neglects interaction between par-

ticles, gives a reasonable approximation. The free energy models currently used to

9



predict properties of hydrogen employ elaborate schemes to determine the interac-

tion terms. Not all of them were constructed to describe the whole high temperature

phase diagram as done by Saumon and Chabrier (1992). Ebeling and Richert (1985b)

studied the plasma and the atomic regime, while models by Beule et al. (1999) and

Bunker et al. (1997) were designed to the describe the dissociation transition. The

Ross (1998) model was primarily developed to study the molecular-metallic transi-

tion. One difficulty common to free energy models is how to treat the interaction of

charged and neutral particles. Often, this is done by introducing hard-sphere radii

and additional corrections. These kinds of approximation lead to rather different

predictions from various chemical models. The differences are especially pronounced

in the regime of the molecular-metallic transition because of the high density and the

presence of neutral and charged species. If the derivative of the free energy function

is a continuous function in this region, then no PPT is predicted. If on the other

hand the different components in F lead to a discontinuous first derivative, a PPT is

inevitably predicted.

One purpose of our PIMC calculation is to provide data so that free energy models

can be fitted to it. Those can then be used to derive additional information, which

can not be obtained directly from PIMC simulations.

1.5 Computational Methods

In this section, we will give a brief overview of different computational methods used

to study hot, dense hydrogen. The first simulations used quasi-classical methods

based on effective potential (Hansen, 1973). In recent years a variety of simulation

techniques have been developed from first principles, which include density-functional-

theory molecular dynamics (Hohl et al., 1993; Kohanoff and Hansen, 1995; Galli

et al., 2000; Lenosky et al., 2000) and tight-binding molecular dynamics (Kwon et al.,

1994; Collins et al., 1995; Lenosky et al., 1997a,b). The density function theory

and the tight-binding approach are used to describe the electron-electron and the

electron-proton interactions, while classical dynamics is used for the protons. The

PIMC equation of state will be compared with results from these methods. Also

wave packet molecular dynamics has been applied to dense hydrogen (Klakow et al.,

1994a,b; Ebeling and Militzer, 1997; Nagel et al., 1998). It employs a Hartree-Fock

type ansatz for the wave function and time-dependent variational principle to describe

its evolution.

Furthermore there is PIMC, which represent an exact quantum-statistical method
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to determine equilibrium properties, which relies on an approximation for the nodal

surfaces in order to deal with the fermion sign problem. It treats protons and electrons

quantum-mechanically. A general description of the path-integral formalism can be

found in (Feynman, 1972; Schulman, 1981; Kleinert, 1990).

The path integral technique as a numerical method in the form used in this work

has been developed in series of works including (Pollock and Ceperley, 1984, 1987). It

has been applied to the variety of different bosonic systems including the study of the

lambda phase transition in 4He (Ceperley, 1995), hard-sphere bosons (Grüter et al.,

1997), the melting transition of molecular hydrogen surfaces (Wagner and Ceperley,

1996), and conditions of superfluidity of molecular hydrogen (Gordillo and Ceperley,

1997). Also a number of fermionic systems have been studied: the crystallization of

the one-component plasma Jones and Ceperley (1996), electronic forces on molecules

(Zong and Ceperley, 1998) and the electron hole plasma (Shumway and Ceperley,

1999).

First simulations of dense hydrogen have been by Pierleoni et al. (1994) and Magro

et al. (1996). Densities corresponding to 1.0 <
∼ rs

<
∼ 2.2 have been studied using free

particle nodes. In this work, we extend the investigation into the non-degenerate

regime up to rs = 14. Then we perform a time step analysis and study finite size

effects. Furthermore, a variational density matrix method is developed, which is used

to replace the free particle nodes. Using this improved nodal surface we reexamine

the PPT predicted by Magro et al. (1996). Furthermore, we extended the restricted

PIMC method to open paths and calculate the momentum distribution as well as

natural orbitals.

1.6 Units

Throughout this work, atomic units of energy and length,

1Ha = 4.359748 · 10−18 J
1 a0 = 0.529177 · 10−10m ,

will be used except where explicitly indicated otherwise. Temperatures are given in

Kelvin and it is useful to know, 1 eV/kB = 11604.4K and 1Ha/kB = 315 773K. It

should also be noted that we dropped a factor kB for simplicity when the time step

is specified e.g. τ−1 = 106K.
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1.7 Thesis Overview

Chapter 2 starts with a review of the path integral Monte Carlo method that will be

used throughout this work. Chapter 3 introduces a new variational principle in order

to derive a variational density matrix that will be employed for a variational calcu-

lation of hydrogen and used to construct the nodal surfaces in PIMC. In chapter 4,

we present thermodynamic properties including energy, pressure, and pair-correlation

functions from PIMC simulation of hydrogen and deuterium. We discuss the high

temperature phase diagram including the regime of the hypothetical plasma phase

transition. Additionally, a hugoniot function will be derived and compared with re-

cent laser shock wave experiments. Chapter 5 presents the calculation of off-diagonal

density matrix elements, which requires the sampling of open paths. After a de-

scription on how this method can be applied to fermionic systems, the momentum

distribution for the electron gas and for the electrons in hydrogen is discussed, which

is followed by an introduction to natural orbitals. Chapter 6 presents the conclusion.
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Chapter 2

Path Integral Monte Carlo Method

In this chapter, we will give a review of the PIMC technique (Ceperley, 1995) and

discuss all the necessary components required to build fermionic PIMC simulations.

Starting from the thermal density, the path integral formalism will be introduced, a

pair action method will be derived and the role of permuting paths in bosonic and

fermionic systems will be explained. Then, the origin of the fermion sign problem

will be discussed as well as the suggested solution based on the nodal surfaces of a

trial density matrix (Ceperley, 1991, 1996). Furthermore, a new time step analysis

will be presented that studies the effect of the nodal action. Finally the distribution

of permutation cycles from recent hydrogen simulations will be shown.

2.1 The Thermal Density Matrix

A quantum mechanical system in a pure state can be described by single wave function

|Ψ〉, which can be expressed in terms of eigenvalues Ei and eigenfunctions |Ψi〉 of the
Hamiltonian H. The corresponding density matrix operator is given by,

ρ = |Ψ〉 〈Ψ| . (2.1)

The density matrix provides a convenient way to extend the study to finite tempera-

ture. Following the principles of statistical mechanics, one puts the system in contact

with a heat bath and assigns classical probabilities pi to the quantum mechanical

states |Ψi〉, which leads to a thermal density matrix,

ρ =
∑

i

pi |Ψi〉 〈Ψi| . (2.2)
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In the canonical ensemble at temperature T , the probabilities are proportional to the

Boltzmann factor pi ∝ exp(−βEi), where kBT = 1/β. The density matrix now reads,

ρ =
∑

i

e−βEi |Ψi〉 〈Ψi| = e−βH . (2.3)

The expectation of any operator O is given by,

〈O〉 = Tr [Oρ]
Tr ρ

=
1

Z

∑

i

e−βEi 〈Ψi| O |Ψi〉 (2.4)

and the canonical partition function is Z =
∑

i e
−βEi . For sake of numerical simula-

tions, it is convenient to change to a position-space representation. Introducing the

set of coordinates for a system of N particles in D dimensions R = {r1 . . . rN}, the
density matrix becomes,

ρ(R,R′; β) = 〈R| e−βH |R′〉 =
∑

i

e−βEi Ψ∗i (R)Ψi(R
′) . (2.5)

For any hermitian Hamiltonian H the density matrix is symmetric in its two argu-

ments,

ρ(R,R′; β) = ρ(R′,R; β) . (2.6)

The expectation value is given by,

〈O〉 =
1

Z

∫

dRdR′ ρ(R,R′; β) 〈R′| O |R〉 (2.7)

Z =

∫

dR ρ(R,R; β) . (2.8)

For a free particle in a periodically repeated box of size L and volume V
¦

= LD, the

density matrix can derived from the exact eigenfunctions of the Hamiltonian given

by plane waves,

Ψn(r) =
1√
V¦
e−iknr (2.9)

with k-vector kn = 2πn/L, where n is a D-dimensional integer vector. Hence,

ρ(r, r′; β) =
1

V¦
∑

n

exp{−βλk2n + ikn(r− r′)} (2.10)

= (4πλβ)−D/2
∑

n

exp

{

−(r− r′ − nL)2
4λβ

}

(2.11)

≈ (4πλβ)−D/2 exp

{

−(r− r′)2
4λβ

}

if λβ ¿ L2 , (2.12)

14



where λ = ~2/2m for a particle of mass m. Alternatively, this solution can be derived

from the Bloch equation,
∂ρ

∂β
= Hρ , (2.13)

which is a diffusion equation in imaginary time β. The initial condition is provided

by the known high temperature limit,

ρ(R,R′; 0) = δ(R−R′) . (2.14)

For free particles, the Bloch equation simply reads,

∂ρ

∂β
= −λ∆ρ . (2.15)

The ∆ operator can be applied either to the first or to the second argument in

ρ(r, r′; β). In any case, this equation describes the diffusion of paths in imaginary

time. The exact solution is given by Eq. 2.11. The diffusion constant λ is determined

by the mass of the particle. It is large for light particles leading to a fast diffusion in

imaginary time, and small for heavy and therefore classical particles. The width of

the density matrix is given by
√
4λβ, which is related to the frequently used thermal

de Broglie wave length defined as,

Λ =
h√

2πmkBT
≡
√

4πλβ . (2.16)

If this length reaches the order of the inter-particle spacing, many body quantum

effects become important. This relation is usually discussed in terms of the degeneracy

parameter,

nΛD , (2.17)

which relates the volume per particle V
¦

/N ≡ n−1 to the volume occupied by an

individual path ΛD. This parameter defines a temperature scale for the emergence

of quantum statistical effects such as Bose condensation in Bosonic systems and the

formation of a Fermi surface in Fermion systems. The latter process will be discussed

in detail in sections 2.6 and 5.3.

2.2 Imaginary Time Path Integrals

The underlying principle for the introduction of path integrals in imaginary time is

the product property of the density matrix stating that the low temperature density
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matrix can be expressed as a product of high temperature matrices. In operator

notation this reads,

e−βH =
(

e−τH)M , (2.18)

where the time step is τ = β/M . In position space this becomes a convolution, in

which one has to integrate over all intermediate time slices,

ρ(R,R′; β) =

∫

. . .

∫

dR1dR2 . . . dRM−1 ρ(R,R1; τ)ρ(R1,R2; τ) . . . ρ(RM−1,R
′; τ).

(2.19)

This is called a path integral in imaginary time. The expression is exact for any

M ≥ 1. In the limit M → ∞, it becomes a continuous paths beginning at R and

ending at R′.

The reason for using a path integral is in the limit of high temperature, the density

matrix can be calculated. Usually the Hamiltonian can be split in a kinetic and in a

potential part, H = K + V and the density matrix can expressed using the following

operator identity (Raedt and Raedt, 1983),

e−τ(K+V) = e−τKe−τVe−τ2C2e−τ3C3 +O(τ 4) , (2.20)

where

C2 = [A,B] /2 , (2.21)

and

C3 = [[B,A] , A+ 2B] /6 . (2.22)

In the limit of τ → 0, one can neglect the commutators, which are of higher order in

τ . This is known as the primitive approximation,

e−τ(K+V) ≈ e−τKe−τV . (2.23)

It states that in the limit of M → ∞, the density matrix can be written as product

of a potential and kinetic density matrix. This has been shown by Trotter (1959),

e−β(K+V) = lim
M→∞

(

e−
β
M
K e−

β
M
V
)M

. (2.24)

The density matrix for a system of N particles in the primitive approximation is given

by,

ρ(R0,RM , β) =

∫

. . .

∫

dR1 dR2 . . . dRM−1 (4πλτ)
DNM/2

× exp

{

−
M
∑

i=1

[

(Ri−1 −Ri)
2

4λτ
+
τ

2
(V (Ri−1) + V (Ri))

]

}

. (2.25)
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In the path integral formalism this is written as,

ρ(R,R′; β) =

∫

R→R′

dRt e
−S[Rt] , (2.26)

where S[Rt] is the action of the path. Alternatively, one separates the kinetic and

potential parts,

ρ(R0,RM , β) =

∫

. . .

∫

dR1 dR2 . . . dRM−1

〈R0| e−τK |R1〉 . . . 〈RM−1| e−τK |RM〉 exp
{

−τ
M
∑

i=1

V (Ri)

}

.

The free particle terms act like a weight over all Brownian random walks (BRW) in

imaginary time β starting at R0 and ending at RM . In the limit of M → ∞, this

leads to the Feynman-Kac relation

ρ(R,R′, β) = ρ0(R,R
′, β)

〈

e−
∫ β
0 dt V (R(t))

〉

BRW
. (2.27)

In the semi-classical approximation, one considers only the classical path,

Rsc(t) =

(

1− t

β

)

R+
t

β
R′ , (2.28)

instead of integrating over all BRW. The resulting semi-classical density matrix reads,

ρsc(R,R
′, β) = ρ0(R,R

′, β) e−
∫ β
0 dt V (Rsc(t)) . (2.29)

Already, the primitive approximation is a sufficient basis for a path integral Monte

Carlo simulation. However, the required number of time slices to reach accurate

results would be enormous. The following sections, we discuss methods to derive a

more accurate high temperature density matrix in order to reduce the number of slices

to a computationally feasible level. A pair action will be derived, which contains the

exact solution of the two particle problem. This means only one time slice is required

for a simulation of two particles at any temperature. However, in many particle

systems, a path integral is needed because of many-particle effects and the fermion

nodes, which will be discussed in section 2.6.

2.3 Pair Density Matrix

For the systems under study, the interactions consist of pairwise additive potentials,

V (R) =
∑

i<j Vij(ri−rj). The full density matrix given by the Feynman-Kac relation,

〈

e−
∫ τ
0 dt V (R(t))

〉

BRW
=

〈

∏

i<j

e−
∫ τ
0 dt Vij(rij(t))

〉

BRW

, (2.30)
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which, in the limit of sufficiently small τ , can by approximated by a product of pair

density matrices

〈

e−
∫ τ
0 dt V (R(t))

〉

BRWR

≈
∏

i<j

〈

e−
∫ τ
0 dt Vij(rij(t))

〉

BRWrij

. (2.31)

This is known as the pair approximation. It means that the correlation of two particles

becomes independent of other particles within a sufficiently small time interval. The

derivation of the pair density matrix will be discussed in the remaining part of this

section.

Electrons and protons interact via the Coulomb potential. For the two particle

problem, the eigenfunctions of the Hamiltonian can be expressed in terms of special

functions and the pair density matrix can be calculated by performing the sum over

all states (Pollock, 1988). However, the states are only known analytically in an

infinite volume. For the purpose of a simulation in a periodic cell, the Coulomb

potential is broken up into a short range part in real space and a long range part in

k-space using an optimized Ewald break-up (Ewald, 1917) developed by (Natoli and

Ceperley, 1995). For both parts separately, a pair action will be derived as discussed

in the following sections. It should be noted that the break up of the potential

is an approximation, which is made in order to calculate the pair density matrix

corresponding to a long-range pair potential in a periodic system. Ideally, one would

calculate the full action and then perform an Ewald break-up.

2.3.1 Short Range Action

The exact pair density matrix for any interaction potential in infinite volume can be

calculated by the matrix squaring technique by Storer (1968). This method is applied

to the short-range part generated by the Ewald break-up of the Coulomb potential.

Since the potential is short range the periodicity is irrelevant. First, one factorizes

the density matrix into a center-of-mass term and a term depending on the relative

coordinates. The latter term is equivalent to the density matrix for a particle with

the reduced mass µ−1 = m−1
1 +m−1

2 in an external potential. The one expands the

pair density matrix in partial waves. In D = 3 dimensions, it reads,

ρ(r, r′; τ) =
1

4πrr′

∞
∑

l=0

(2l + 1) ρl(r, r
′; τ) Pl(cos θ) , (2.32)

where θ is the angle between r and r′ and Pl denotes the lth Legendre polynomial.

For spherically symmetric interaction potentials, different partial wave components
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ρl do not mix and can be derived from independent matrix squaring procedures. The

six dimensional pair density matrix is reduced to a sum of two dimensional objects.

Each component ρl satisfies a 1 dimensional Bloch equation with an additional term,

−∂ρl(r, r
′; β)

∂β
=

[

−λ d
2

dr2
+ v(r) +

λ

r2
l(l + 1)

]

ρl(r, r
′; β) (2.33)

and also fulfills the convolution equation,

ρl(r, r
′; β) =

∫ ∞

0

dr′′ ρl(r, r
′′; β/2) ρl(r

′′, r′; β/2) . (2.34)

This is a one dimensional integral for a given pair of r and r′, which can be calculated

numerically. In order to derive the pair density matrix for a time step τ−1 = 106K,

one typically performs of the order of m = 12 matrix squarings starting at the inverse

temperature τ−10 = 2m × 106K. The partial waves are initialized using semi-classical

expression analogous to Eq. 2.29, for details see Ceperley (1995) and Magro (1996).

The resulting pair density matrix can be verified by using the Feynman-Kac formula

Eq. 2.27 in a separate MC simulation (Pollock and Ceperley, 1984).

The pair density matrix is between two particles at initial position (ri, rj) and

final position (r′i, r
′
j) needs to be evaluated very frequently in a PIMC simulation.

Using the fact that initial and final position cannot be too far apart, one can expand

the action in a power series. It is convenient to use the three distance

q =
1

2
(|r|+ |r′|) (2.35)

s = |r− r′| (2.36)

z = |r| − |r′|, (2.37)

where r = ri − rj and r′ = r′i − r′j. The variables s and z are of the order of
√
λτ .

The action can then be expanded as,

u(r, r′; τ) =
1

2
[u0(r; τ) + u0(r

′; τ)] +
nA
∑

k=1

k
∑

j=0

ukj(q; τ) z
2j s2(k−j) . (2.38)

where nA denotes the order of the expansion. In zeroth order, only the first term, the

end-point action, is considered. The following terms are off-diagonal contributions,

which are important because they allow to reduce the number of time slices in a

PIMC simulation. The same expansion formula is used for the contributions to the

energy given by β derivative of the action. nE denotes the order in this expansion.
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2.3.2 Long Range Action

The long range part of the potential leads to long range action. As a first step, it can

be calculated from the primitive approximations as used in (Shumway, 1999). Alter-

natively, one can use the random phase approximation (RPA) (Pines and Nozieres,

1989) to obtain an improved long range action (for details see (Magro, 1996)), which

is constructed in such a way that the local energy is minimized,

EL =
1

ρ

(

∂ρ

∂β
+Hρ

)

. (2.39)

EL vanishes for a solution of the Bloch equation 2.13. One assumes a given short

range density matrix ρs, which solves the Bloch equation for the Hamiltonian Hs =

−λ∇2 + Vs. For the full Hamiltonian H = Hs + Vl with the additional potential Vl,

one derives a long range density matrix ρl such that the density matrix ρlρs leads to

EL = 0. One writes the long range potential Vl and action e−Ul in the form,

Vl(R) =
∑

k

∑

αβ

vαβk

∑

i∈T(α)
j∈T(β)

eik(ri−rj) (2.40)

=
∑

k

vαβk ραk ρ
β
−k , (2.41)

Ul(R) =
∑

k

uαβ
k ραk ρ

β
−k , (2.42)

ραk =
∑

j∈T(α)
eikrj , (2.43)

where vαβk is the Fourier transform of the potential between particle of type α and

β denoted by T(α) and T(β). Setting EL = 0, leads to three body terms, which

are approximated by the RPA. The resulting first order differential equations, which

are integrated numerically in imaginary time from 0 to β with the initial condition

uk = 0. The calculated coefficients uij
k then enter PIMC simulations as long range

action in form of Eq. 2.42.

2.4 Path Integrals for Fermions and Bosons

According to the spin-statistics theorem, fermion systems are described by totally

antisymmetric wave functions and bosonic systems by symmetric ones. In other

words, the wave functions must be antisymmetric/symmetric under the exchange of

two identical particles,

ΨB/F(R) = (±1)P ΨB/F(PR) , (2.44)
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where P stands for any of the N ! permutations of the particle label in the many-body

coordinate R. In systems with additional internal degrees of freedom such as spin,

the permutation is applied to those as well. The + sign corresponds bosonic systems

(B) and the − sign to fermionic systems (F). This symmetry property can be realized

by applying an antisymmetrization/symmetrization operator to a wave function for

distinguishable particles ΨD(R),

ΨB/F(R) =
1

N !

∑

P
(±1)P ΨD(PR) . (2.45)

The density matrix for a fermion/bosonic system is constructed from these states and

can be written as,

ρB/F(R,R
′; β) =

1

N !

∑

P
(±1)P ρD(R,PR′; β) . (2.46)

One can (anti)symmetrize with respect to the first or second argument or both. All

three ways are equivalent and lead to the same physical observables. The (anti)sym-

metry enters into the path integral formalism as a sum over all N ! permutations. In

addition to the integral over all configurations of paths, one has to sum over possible

permutations of final set of coordinates R′. Eq. 2.19 then reads,

ρB/F(R,R
′; β) =

1

N !

∑

P
(±1)P

∫

. . .

∫

dR1 dR2 . . . dRM−1

ρD(R,R1; τ) ρD(R1,R2; τ) . . . ρD(RM−1,PR′; τ) (2.47)

=
1

N !

∑

P
(±1)P

∫

R→PR′

dRt e
−S[Rt] . (2.48)

The β → 0 limit from Eq. 2.14 now becomes,

ρB/F(R,R
′; 0) =

1

N !

∑

P
(±1)P δ(R− PR′) . (2.49)

In most applications, one uses the path integrals to calculate averages from Eq. 2.7.

There one needs the trace of the density matrix, which means one sums up all closed

paths (for sampling with open paths see chapter 5). For distinguishable particles,

they start at any R and return to it. For fermions and bosons one also sums over

paths that return to a permuted set of coordinates given by PR. Those contributions

become relevant if the degeneracy parameter (Eq. 2.17) is the order of 1 or greater.

The path integral technique has been applied extensively to bosonic systems in

particular to liquid 4He (Ceperley, 1995; Grüter et al., 1997). It is an exact method
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because all permutations carry the same sign and one does not have to deal with can-

cellation effects of positive and negative contributions as in fermionic systems. Those

will be discussed in section 2.6. We call a method exact (see (Ceperley, 1996)), if it

only contains approximations, which can be controlled by an adjustable parameter,

and therefore converges to the exact numerical results with increasing accuracy.

2.5 Monte Carlo Sampling

2.5.1 Metropolis Monte Carlo

Most path integral calculations work with a Metropolis rejection algorithm (Metropo-

lis et al., 1953), in which a Markov process is constructed in order to generate a ran-

dom walk through state space, {s0, s1, s2, . . .}. A transition rule P (s→ s′) depending

on the initial state s and the final state s′ is exploited to step from si to si+1, which

is chosen in such a way that the distribution of {sn} converges to a given distribution

π(s). If the transition rule is ergodic and fulfills the detailed balance

π(s)P (s→ s′) = π(s′)P (s′ → s), (2.50)

then the probability distribution converges to an equilibrium state satisfying,

∑

s

π(s)P (s→ s′) = π(s′) . (2.51)

The transition probability P (s → s′) can be split into two parts, the sampling dis-

tribution T (s → s′) that determines how the next trial state s′ is selected in state s

and the acceptance probability A(s→ s′) for the particular step,

P (s→ s′) = T (s→ s′)A(s→ s′) . (2.52)

The detailed balance can be satisfied by choosing A(s→ s′) to be,

A(s→ s′) = min

{

1 ,
T (s′ → s)π(s′)

T (s→ s′)π(s)

}

. (2.53)

One starts the MC process at any arbitrary state s. Most likely this state has only

a very small probability because in thermodynamic system, π(s) is a sharply peaked

function that usually spans many orders of magnitude. Therefore, it would be over-

represented in averages calculated from,

〈O〉 = 1

m

m
∑

i=1

O(si) . (2.54)
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In the averages, one notices a transient behavior that eventually reaches a regime,

where it fluctuates around a steady mean. From approximately that point on, one

starts to collect statistics. For uncorrelated measurements, the estimator for the

standard deviation σ and the error bars ε can be determined from

σ2O =
1

m− 1

m
∑

i=1

(Oi − 〈O〉)2 , (2.55)

εO =
σO√
m

. (2.56)

However, in most MC simulations the events are correlated because one only moves

a small fraction of the particles at a time. The correlation time κ can be shown to

be estimated by

κO = 1 +
2

σ2O(m− 1)

m−1
∑

k=1

m
∑

i=1

(Oi − 〈O〉) (Oi+k − 〈O〉) . (2.57)

The true statistical error considering correlations is given by

εO
√
κO . (2.58)

Alternatively, it can be obtained from a blocking analysis. There, one averages over

2m events Oi before calculating the error bar from Eq. 2.56. This error will grow as a

function of m and eventually converge when the interval 2m is long enough that the

averages can be considered to be statistically independent. It should be noted that

there can be different reasons for correlations in MC simulations that can occur on

different time scales. In certain cases, it becomes difficult to estimate the correlation

time from Eq. 2.55 because of long correlations that can only be determine accurately

from very long series of simulations data.

The aim of an efficient MC procedure is to decrease the error bars as rapidly as

possible for given computer time. The efficiency is defined by,

1

κOσ2OTs

, (2.59)

where Ts is the computer time per step.

For certain applications, the sampling distribution π(s) leads to error bars for a

subset of observables that are too large. A typical example in classical MC is the pair

correlation function g(r) at small distances. In those cases, importance sampling can

be applied. One employs an importance function f(s) to generate a Markov chain

according to modified distribution

π̃(s) = π(s)f(s) (2.60)
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rather than to π(s). In the end, one divides it out and calculates averages from

〈O〉 =
m
∑

i=1

O(si)
f(si)

/

m
∑

i=1

1

f(si)
. (2.61)

This method will be applied to the sampling with open paths in chapter 5. It works

well as long as the modifications to the sampling distribution are not too disruptive.

Otherwise, the variance σO grows or even becomes infinite. A sufficient condition for

the applicability is that 〈O2〉 stays finite.

2.5.2 Single Slice Moves

In classical MC, the particles are represented by points in D dimensional space,

which are moved in every MC step. Most simply, one can choose the displacement

of particles according to a uniform distribution. In PIMC, particles are represented

by path and the equivalent moves would shift the entire polymer to a new position

without changing its internal structure. We call this displacement moves and use

them for the protons because their paths stay very localized. They are more efficient

than single or multi-slice moves discussed in the following.

In a single slice move, one selects a particle and a time slice i and samples a

new configuration r′i while keeping ri−1 and ri+1 fixed. From now on, the subscript

denotes the time slice. The optimal choice for the sampling distribution of ri is given

by the heat bath rule, which will be described in section 2.5.4. It states that the new

coordinate should by chosen according to its equilibrium distribution,

T (ri → r′i) ≡ T (r′i) =
ρ(ri−1, r′i; τ) ρ(r

′
i, ri+1; τ)

∫

dr ρ(ri−1, r; τ) ρ(r, ri+1; τ)
=
ρ(ri−1, r′i; τ) ρ(r

′
i, ri+1; τ)

ρ(ri−1, r′i+1; 2τ)
.

(2.62)

Unlike lattice MC methods, the normalization is difficult to compute, which is why

one uses the distribution of non-interacting particles, which is a Gaussian centered

around the midpoint rm = (ri−1 + ri+1)/2,

T (ri) = (2πλτ)−D/2 exp

{

−(ri − rm)2
2λτ

}

. (2.63)

We call this implementation free particle sampling. For non-interacting particles, this

leads to an acceptance ratio of 100% but interactions reduce this ratio. For very dense

systems, like liquid 4He, which interacts approximately via a hard-sphere potential,

it can become close to zero. For all hydrogen applications, the free particle sampling

worked very well.
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2.5.3 Multilevel Moves

One notices that the average displacement in a single slice move is of order
√
τλ, which

means that the diffusion through phase space goes to zero for small time steps. This

is clearly an unwanted effect in particular because one would like to have an algorithm

that is almost independent of the time step. This can be done by introducing multi-

slice moves. Instead of moving one bead one cuts out and regrows a whole section

of the path containing 2k − 1 slices. The number k is called the level of the move.

Different methods have been suggested to regrow the path such as Lévy flights (Lévy,

1939) or the bisection method. The latter method will be described here using free

particle sampling. The distribution in Eq. 2.63 for any level k reads,

Tk(r) = (2kλτπ)−D/2 exp

{

−(r− rm)2
2kλτ

}

. (2.64)

First, one samples the bead ri at slice i + 2k−1 from a Gaussian distribution Tk

centered at the midpoint of ri and ri+2k . As a second step with k → k − 1, one

samples the slices corresponding to the next lower level i+2k−1 and i+3 ∗ 2k−1 using
the new Tk and then keeps filling in the new coordinates until level k = 1 is reached

and a complete set of trial coordinates has been created. Finally, one performs one

Metropolis step on the entire move.

The efficiency of this method can be improved by a multilevel Metropolis method.

It rejects certain unlikely paths at an earlier level instead of waiting until the end and

then using a single metropolis step. One starts at the highest level k, samples beads

according to Tk, and accepts with

A(sk → s′k) = min

{

1 ,
Tk(s

′
k → sk)πk(s

′
k)

Tk(sk → s′k)πk(sk)

}

. (2.65)

Note that the sampling distribution Tk as well as the probability function πk are

derived from the density matrix corresponding to the time step 2kτ . If the move is

rejected one starts again from the beginning. Otherwise, one continues at the next

lower level k → k−1 and samples all the midpoints according to the new Tk and uses

a modified acceptance probability,

A(sk → s′k) = min

{

1 ,
Tk(s

′
k → sk)πk(s

′
k)πk+1(sk)

Tk(sk → s′k)πk(sk)πk+1(s′k)

}

. (2.66)

The bisection is continued until the final level has been accepted. Only in this case,

the particle coordinates are updated. This method has the advantage that unlikely

moves are rejected early. The algorithm as a whole satisfies detailed balance because
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it is fulfilled on each level,

πk(sk)

πk+1(sk+1)
Tk(sk → s′k) Ak(sk → s′k) =

πk(s
′
k)

πk+1(s′k+1)
Tk(s

′
k → sk) Ak(s

′
k → sk) .

(2.67)

The total transition probability for the move being accepted at all levels is given by

the following product,

P(s→ s′) =
kmax
∏

k=1

Tk(sk → s′k) Ak(sk → s′k) . (2.68)

It is worth noting that one can use an approximate form of πk for all levels except

for the lowest. These kinds of approximation modify only the acceptance ratios but

not the MC averages. Therefore, it can be advantageous to use a simplified action,

which can be computed faster. We often used the approximation uk ≈ 2k−1u1, which

means that we can re-use the diagonal part of the pair action from the previous levels.

Furthermore, the long-range as well as the off-diagonal contributions to the action

are only calculated at the lowest level.

2.5.4 Permutation Sampling

Fermi and Bose statistics require to sum over all permutations in addition to the

integration in real space. Both can be combined into one MC process that samples

configurations in the space of coordinates and permutations.

In Eq. 2.47, one sums paths beginning at R and going to PR′. One can also think

of two sets of coordinates R and R′, for which one integrates over all possible ways

to link the individual particles. In this picture, the permutation of the paths can be

carried out at any time slice because the permutation operator permutes with the

Hamiltonian. This is what is done in the actual MC simulation. One selects a time

slice denoted by tP , at which one switches from the unpermuted to the permuted

coordinates. tP can be shifted to any slice along the paths. In a permutation move,

one introduces a new permutation and simultaneously regrows the paths between

the fixed points Ri and Rj with j = i + 2k. The equilibrium distribution of the

permutation is given by,

π(P) = ρ(Ri,PRj; 2
kτ)

∑

P ′
ρ(Ri,P ′Rj; 2kτ)

. (2.69)

Since there are N ! permutations, it is advisable to put an upper limit on the step size

in permutation space. Typically, one only considers changes in current permutations
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that involve the cyclic exchange of up to 3 or 4 particles. Since the normalization is

known in Eq. 2.69 one can use the heat bath transition rule, in which a permutation

P ′ is sampled from the neighborhood N (P) of the current permutation P using their

equilibrium distribution,

Thb(P → P ′) =
π(P)
C(P) , (2.70)

where the normalization is given by the sum over all neighboring states,

C(P) =
∑

P ′∈N (P)
π(P ′) . (2.71)

The acceptance probability follows from Eq. 2.53,

Ahb(P → P ′) = min

{

1 ,
C(P)
C(P ′)

}

. (2.72)

If the neighborhoods of P and P ′ are equal, all moves will be accepted. In the

MC simulation, one uses the free particle density matrix to construct a permutation

table containing all permutations in the neighborhood. Then P ′ is selected and

accepted with the probability in Eq. 2.72, which does not exactly equal one unless

the permutation table exhausts the whole space.

2.6 Fermion Nodes

2.6.1 Fermion Sign Problem

In simulations of fermionic systems, one has to deal with an extra complication emerg-

ing from the cancellation of positive and negative contributions to the averages cal-

culated from,

〈O〉 =
∑

P(−1)P
∫

dRdR′ 〈R| O |PR′〉 ρ(PR′,R; β)
∑

P(−1)P
∫

dR ρ(R,PR; β)
. (2.73)

Even permutations have positive signs and odd ones have negative signs. The magni-

tude of the contributions from non-identity permutations depends on the degeneracy

of the systems, which can be discussed in terms of the parameter nΛD or equivalently

as the ratio of temperature to Fermi temperature θ = T/TF . Here, we compare to

the Fermi energy EF = kBTF of an ideal quantum gas in 3 dimensions,

EF = λ (6π2n)2/3, (2.74)

where n is the density of particles in this particular spin state, which leads to

θ−3 =
9π

16
(nΛ3)2 . (2.75)
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If the temperature is of the order of the TF non-identity permutations or lower are

important. Those also lead to a significant fraction of negative contributions to the

enumerator as well as to the denominator in Eq. 2.73. The consequence are large

fluctuations in the computed averages. This is known as the fermion sign problem.

While Eq. 2.73 always leads to the exact answer it becomes numerically increasingly

difficult to compute the averages at the point where the interesting fermionic effects

start to occur. It was shown by Ceperley (1996) that the efficiency of the straight-

forward implementation scales like e−2βNf , where f is the free energy difference per

particle of a corresponding fermionic and bosonic system while N is the number of

particles.

2.6.2 Restricted Path Integrals

In the work by Ceperley (1991, 1996), it has been shown that one can evaluate the

path integral by restricting the path to only specific positive contributions. One

introduces a reference point R∗ on the path that specifies the nodes of the density

matrix, ρF (R,R
∗, t) = 0. A node-avoiding path for 0 < t ≤ β neither touches nor

crosses a node: ρF (R(t),R∗, t) 6= 0. By restricting the integral to node-avoiding

paths,

ρF (R
∗,Rβ; β) =

∫

dR0 ρF (R0,R
∗; 0)

∮

R0→Rβ∈Υ(R∗)

dRt e
−S[Rt] (2.76)

=
1

N !

∑

P
(−1)P

∮

PR∗→Rβ∈Υ(R∗)

dRt e
−S[Rt] , (2.77)

where Υ(R∗) denotes the nodal restriction with respect to the reference point R∗.

The nodal restriction remains the same if any permutation P is applied to the ref-

erence point, which leads to Υ(R∗) ≡ Υ(PR∗) because ρF (R,R
∗; β) = 0 implies

ρF (R,PR∗; β) = 0. Eq. 2.77 can now be written in the following alternative form,

ρF (R
∗,Rβ; β) =

1

N !

∑

P
(−1)P

∮

PR∗→Rβ∈Υ(PR∗)

dRt e
−S[Rt] (2.78)

=
1

N !

∑

P
(−1)P

∮

R∗→PRβ∈Υ(R∗)

dRt e
−S[Rt] , (2.79)

where we have applied the permutation P−1 to the entire path and changed the

summation index using that the sign of P and P−1 are equal.
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In the case of diagonal density matrix elements, Eq. 2.79 can be simplified because

odd permutations inevitably cross a node since ρF (R
∗,R∗; 0) = −ρF (R∗,PoddR∗; 0).

Eq. 2.79 then reads,

ρF (R,R; β) =
1

N !

∑

P
even

∮

R→PR∈Υ(R∗≡R)

dRt e
−S[Rt] . (2.80)

For off-diagonal density matrix elements however, odd permutations need to be con-

sidered and lead to negative contributions, which will be discussed in chapter 5.

Since all contributions to the diagonal density matrix elements are positive the

restricted PIMC technique represents, in principle, a solution to the sign problem.

The method is exact if the exact fermionic density matrix is used in the restriction.

The proof given by Ceperley (1996) consists of three steps.

(i) The initial condition for the Bloch equation 2.13 are given by,

ρF (R,R
∗; 0) =

1

N !

∑

P
(−1)P δ(R− PR∗) (2.81)

and ρ(R∗,R∗; 0) ≥ 0. R∗ and therefore the initial conditions are kept fixed for

the following arguments. The solution of the Bloch equation is uniquely deter-

mined by the boundary conditions, which means ρF (R,R
′; β) can be derived

from the values on a certain boundary Υ(R; β ′) for all β ′ < β.

(ii) The nodes of ρF (R,R
∗; β) carve the space-time into a finite number (≤ N !)

of nodal cells, that are sets of points in the space-time connected by node-

avoiding paths. From (i), it follows that the solution inside each nodal cell can

be constructed from the initial condition and the zero boundary condition on

the surface, which is determined by the nodes.

(iii) Enforcing zero boundary conditions at the nodes can be done by introducing a

infinite repulsive potential on the nodes, which prevents any paths from crossing

and therefore guarantees that the density matrix vanishes at the cell boundaries.

2.6.3 Trial Density Matrix

The exact density matrix is only known in a few cases. In practice, applications have

approximated the fermionic trial density matrix ρT (R,R
′; β), most commonly by a

Slater determinant of single particle density matrices,

ρT (R,R
′; β) =

∣

∣

∣

∣

∣

∣

∣

ρ1(r1, r
′
1; β) . . . ρ1(rN , r

′
1; β)

. . . . . . . . .

ρ1(r1, r
′
N ; β) . . . ρ1(rN , r

′
N ; β)

∣

∣

∣

∣

∣

∣

∣

. (2.82)
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More generally, we now discuss systems of spin 1
2
fermions, for which the Hamiltonian

is spin-independent because we do not consider magnetic fields nor relativistic effects

including spin-orbit interactions. There, the spin component in ẑ direction Sz can be

quantized leading to a good quantum number m, which describes the magnetization

of the systems. For ensembles with fixed magnetization m, the density matrix can be

written as a product of two determinants,

ρT (R,R
′; β) =

∥

∥ρ1(ri, r
′
j)
∥

∥

i,j∈↑
∥

∥ρ1(ri, r
′
j)
∥

∥

i,j∈↓ . (2.83)

If one applies an operator that antisymmetrizes completely and then projects out

states of magnetization m one finds only configurations that can again be written

as such a product of two determinants but with relabelled particles. From now on,

we only consider spin unpolarized systems (m = 0, N↑ = N↓). Enforcing the nodes

means that each determinant stays positive all along the paths because configurations

where both determinants flip signs simultaneously have zero measure.

Extensions of this type of nodes are necessary to describe a pairing mechanism that

permits the formation of Cooper pairs in super conductors and electron-hole pairs in

semi-conductors, which then can Bose condense (Bouchard et al., 1988). Simulations

with pairing nodes have been done at zero temperature by Gilgien (1997) and Zhu

et al. (1996) and at finite temperature by Shumway and Ceperley (1999).

The above trial density matrix has been extensively applied using the free particle

(FP) nodes (Ceperley, 1996) including applications to dense hydrogen (Pierleoni et al.,

1994; Magro et al., 1996; Militzer et al., 1999). In this case, the density matrix of a

single FP in a periodically repeated box given by Eq. 2.11 is used in Eq. 2.83. It can

be shown that for high temperatures, the interacting nodal surface approaches the FP

nodal surface. In addition, in the limit of low density, exchange effects are negligible,

the nodal constraint has a small effect on the paths and therefore, its precise shape

is not important. The FP nodes also become exact in the limit of high density when

kinetic effects dominate over the interaction potential. However, for high densities

and high degeneracy, interactions could have a significant effect on the fermionic

density matrix. To gain some quantitative estimate of the possible effect of the nodal

restriction on the thermodynamic properties, it is necessary to try an alternative.

In addition to FP nodes, a variational density matrix (VDM) is derived in chapter

3 that already includes interactions and atomic and molecular bound states. The

effects on the thermodynamic properties from using those as nodes will be discussed

in section 4.3.
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2.6.4 The Reference Point

The FP nodes as well as the VDM nodes represent approximations to the exact

fermion nodes that become increasingly accurate for high temperatures. There is a

simple trick that uses two reference points instead of one and allows to enforce the

nodes by taking the sign of the trial density matrix from ρ(R,R∗; β) rather than from

ρ(R,R∗; 2β).

The density matrix ρ(Rβ,R
′
β; 2β) can be expressed in terms of the convolution equa-

tion,

ρF (Rβ,R
′
β; 2β) =

∫

dR∗ ρF (Rβ,R
∗; β) ρF (R

′
β,R

∗; β) , (2.84)

which can be interpreted as an integral over all pairs of paths, one going from R∗ to

Rβ and a second one from R∗ to R′β. Both fermion density matrices can evaluated

using a restricted path integral with the same reference point R∗. This requires the

time argument to be zero at R∗ and to increase in both directions up to β at Rβ and

R′β. Using the explicit form of ρF in Eq. 2.77 the above equation becomes,

ρ(Rβ,R
′
β; 2β) =

1

N ! 2

∫

dR∗
∑

PP ′
(−1)P+P ′

∮

PR∗→Rβ∈Υ(R∗)

dRt e
−S[Rt]

∮

P ′R∗→R′
β
∈Υ(R∗)

dRt e
−S[Rt] (2.85)

=
1

N ! 2

∑

PP ′
(−1)P+P ′

∫

dR∗
∮

R∗→PRβ∈Υ(R∗)

dRt e
−S[Rt]

∮

R∗→P ′R′
β
∈Υ(R∗)

dRt e
−S[Rt] (2.86)

=
1

N !

∑

P
(−1)P

∫

dR∗
∮

R∗→Rβ∈Υ(R∗)

dRt e
−S[Rt]

∮

R∗→PR′
β
∈Υ(R∗)

dRt e
−S[Rt] , (2.87)

where we have employed the equivalence of Eq. 2.77 and 2.79 and also the fact that the

double sum over permutations be converted into a single one because the following

path integral can be treated as two independent factors. This expression can be

interpreted as a single path integral of the form ρF (Rβ,R
′
β; 2β). The paths start at

Rβ, goes through the reference R∗ at the middle of the path, and ends at PR′
β. The

time argument to check the nodes gets chosen according to,

tref =

{

t for 0 ≤ t ≤ β/2

β − t for β/2 ≤ t ≤ β ,
(2.88)

which means one only needs to evaluate the trial density matrix up to β/2. This

time doubling procedure cannot be applied further without reintroducing the sign

problem.
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2.6.5 Example: Nodes for Two Particles

The following example describes the restricted path integral method and illustrates

why it leads to the exact solution in the case that the nodes are exactly known.

It represents a simplified version of the illustration by Ceperley (1996) that uses the

example of the hydrogen molecule. Here, we talk about the simplest possible problem

that has a node: two free identical particles. For those, the exact nodes are given by,

ρ(r1, r2, r
∗
1, r

∗
2; β) ≡

∣

∣

∣

∣

∣

ρ1(r1, r
∗
1; β) ρ1(r1, r

∗
2; β)

ρ1(r2, r
∗
1; β) ρ1(r2, r

∗
2; β)

∣

∣

∣

∣

∣

= 0 , (2.89)

where ρ1 is given by the free particle density matrix Eq. 2.12. The solution of this

equation is given by,

(r1 − r2) · (r∗1 − r∗2) = 0 . (2.90)

Introducing the relative coordinate r = r1−r2, the node is a plane at the origin r = 0

perpendicular to the vector given by reference point separation r∗ = r∗1 − r∗2.
In this example, we discuss closed paths that end in the reference point r(β) = r∗.

In the case of a permutation, the path must start at −r∗, otherwise at r∗. One can

distinguish three types of paths as shown in Fig. 2.1,

A The path does not cross the node, therefore it starts and ends at r∗.

B It crosses the node an even number of times> 0, therefore also starts and ends at r∗.

C It goes an odd number of times across the node and therefore must start at −r∗.

−r
*

0 r
*

r

0

β

τ

Type A, node avoiding

−r
*

0 r
*

r

0

β

τ

Type B, even number of crossings

−r
*

0 r
*

r

0

β

τ

Type C, odd number of crossings

Figure 2.1: Illustration of the nodal constraint for paths going to r(β) = r∗. Type
A paths are node-avoiding, Type B cross the nodes an even number of times, and Type
C permutes, therefore must start at r(0) = −r∗ and cross the node an odd number of
times.

The various kinds of paths have different physical interpretations. In a system of

distinguishable particles, no permutations can occur and no nodes exist. Therefore
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only paths of type A and B contribute. For bosons, one sums over all permutations,

nodes are irrelevant and no negative signs come in. For fermions, one has the choice of

the direct fermion method or the restricted path method. Both methods are equivalent

if the exact nodes are used. In case of the direct method, one considers all permuta-

tions with positive and negative signs and does not restrict the path. One sums up

contributions from all types including those from type C with a negative sign. For

restricted path integrals, one enforces the node, which rules out any permutations in

two particle systems. Therefore, there are no negative contributions. Furthermore,

the nodal constraint also prevents paths of type B from occurring and one is left with

paths of type A, that stay within the half space given by the nodal plane. Essentially,

one employs the cancellation of B and C in this method. Both cancel exactly because

the flux of the paths is given by the gradient of the density matrix, which is the same

on both sides of the node since the derivative is a continuous function. Summarizing,

it reads,

• Distinguishable particles: A+B

• Bosons: A+B+C

• Fermions without nodes: A+B−C
• Fermions with nodes: Only A.

The magnitude of the different contributions can also be understood studying the

exact solution to the problem stated in Eq. 2.46. For this system of two fermions, it

reads,

ρ(r, r∗; β) = ρD(r, r
∗; β)− ρD(−r, r∗; β) . (2.91)

Setting r = r∗, the positive first term is greater in magnitude than the second because

it is a diagonal density matrix element. It represents paths of type A and B, while

the second term is smaller in magnitude and describes paths of type C. This equation

also shows how a node emerges at r = 0. The second term can be regarded a result

from an image charge with opposite sign on the other side of the node similarly to

the method of image charges in electrostatics. Both contributions are solutions to

the Bloch equation that added together lead to a zero at the node. The determining

parameter for the importance of the image charge is the distance to the node. This

will be used in the derivation of the nodal action in the following section.

2.6.6 Nodal Action

In restricted PIMC simulation, one enforces the node by checking the sign of the

determinant at each time slice. If it turns out to be negative for a proposed configu-
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ration, the move is rejected. The nodes act like an infinite potential barrier. In this

method, it is implicitly assumed that the paths do not wander too far between the

slices and in particular do not cross a node. This puts an additional lower bound on

the number of slices used in a simulation in order to enforce the nodes accurately.

By inserting additional slices, one finds that the some paths are rejected on the finer

scale, which could not have been detected earlier because they crossed and recrossed

the node within the slice. This error can be corrected for by introducing the nodal

action UN .

One assumes a flat node between two slices like in the example discussed in the

previous section, which is a reasonable approximation for small τ . The difference

in action between a system containing a node compared to one without it can be

expressed as,

e−U i
N = e−(U

i
rest.−U i

free) =
ρ(ri−1, ri, τ)− ρ(ri−1, ri − 2di, τ)

ρ(ri−1, ri, τ)
, (2.92)

where di is the distance to the nearest node at the time slice i. The image charge is

placed at ri − 2di. Using the free particle density matrix, the nodal action can be

written in terms of the distances to the node at the two slices,

e−U i
N = 1− exp [− di di−1 / λτ ] . (2.93)

The distance is difficult to calculate but it can be estimated using Newton-Raphson

procedure,

di =
ρT (Ri,R

∗; β)

|∇R ρT (Ri,R∗; β)|
. (2.94)

If ρT is given in matrix form ρij = ρ1(ri, r
∗
j ; β), its derivatives (denoted by ′) can be

calculated efficiently from the cofactor matrix (its transposed inverse) ρ−1ji ,

||ρij||′ = ||ρij||2
∑

ij

ρ′ij ρ
−1
ji . (2.95)

The distance to the node then reads,

d−2 =
∑

i

(

∑

j

(∇riρij)
2 ρ−1ji

)2

. (2.96)

The additional term in the action UN also leads to a contribution to the internal

energy, which can be derived from

EN = −dUN

dτ
= − 1

1− e−x

dx

dτ
, (2.97)

x ≡ di−1 di
λτ

. (2.98)
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The time derivative of x can be approximated by,

−dx
dτ

=
x

τ
− x

di

ddi
dτ
− x

di−1

ddi−1
dτ

(2.99)

≈ x

τ
. (2.100)

This approximation omits the change in the distance to the node with imaginary

time. It has the advantage that one does not have to compute the derivatives of the

distance to the nearest node di, which would require extra numerical work.

The effect of the nodal action UN is shown in Fig. 2.2, where two simulations, one
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Figure 2.2: Comparison of the internal energy per electron from two simulations, one
with nodal action (◦) and one without (•), for 16 free particles at rs = 2.52 and T =
15 625K for different number of time slices 2m leading to a time step τ−1 = 2m−6106K.
4 shows the nodal energy and ¦ denotes the spring kinetic energy given by Etot − EN .
The long dashed line shows the exact energy for this finite system. All simulations were
3.2× 106 steps of level k = m− 3 long.
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with it and without it, are compared as a function of time step. In these simulations,

N = 16 spin-polarized free electrons were studied at T = 15 625K and rs = 2.520.

The conditions were chosen in correspondence with hydrogen simulations discussed

in chapter 4 where 32 protons and 32 electrons in two spin states are studied at a

typical density corresponding to rs = 2.0. The Fermi temperature for an infinite

system (Eq. 2.74) under these conditions is 145 381K. For a system with N = 16, it

becomes 29 747K. The difference is that large because the only 3 k-shells are occupied

while in Eq. 2.74 sum of k-shells were approximated by an integral. The number of

states per k-shell starting from k = 0 are 1, 6, 12, 8, 6, 24, ...

All hydrogen simulations discussed later are performed with τ−1 = 106K (64

slices, m = 6) or smaller time steps. The required time step can be estimated from

the corresponding degeneracy parameter,

nΛD
τ ≡ n (4πλτ)D/2 , (2.101)

which relates the average distance the path travels between the slices,

∆r ≡
√

〈(ri+1 − ri)2〉 =
√
2Dπλτ (2.102)

to the inter-particle spacing. For the above example with τ−1 = 106K, one finds

nΛ3τ = 0.041 and ∆r = 1.725, which must be compared to the inter-particle spacing

given by rs = 2.520. For the example of N = 16 particles at this degeneracy, Fig. 2.2

predicts that choosing the time step such that ∆r/rs
<
∼ 0.7 (nΛ3τ

<
∼ 0.04) leads to

energies reasonably close to the exact value. To go up to 2048 slices (m = 11) is

only possible for a system of free particles this small. The figure shows clearly that

in simulations with the nodal action term, the internal energy converges faster to the

exact value of 7.844 eV, the reason being that configurations of paths where the nodal

constraints are likely to be violated between the slices are rejected because of the UN

term. However, the graph also shows that the nodal energy is overestimated leading to

an internal energy 10% too large. Possible explanations for this discrepancy include

the approximations in the way the distance to the node is estimated, the implicit

assumption that the nodes are planar within the time interval τ and the omission of

two terms in Eq. 2.99. However, in the limit of small τ all those approximations do not

matter and one should find the above mentioned exact value, which was calculated by

a separate MC method in k-space. The nodal constraint there is realized by restricting

each k-point to only one particle. However, the method relies on the exactly known

eigenstates of the Hamiltonian.
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2.6.7 Improvements in the Nodal Action

In the previous section, it has been shown how a nodal action can be used to predict

the probability that paths cross the nodes between two time slices. The procedure

has the advantage that it allows to employ a large time step, which can be crucial for

simulation at low temperature with a high computational demand. However, there

exists still an upper bound on the time step because the assumption of a planar

nodal surface between two slices breaks down. The effects on the thermodynamic

variables calculated from a simulation with too large a time step are especially drastic

in attractive systems like hydrogen. There, the nodes realize the Pauli exclusion

principle, which make matter stable. If it is not guaranteed the system will inevitably

collapse at some point in time during a simulation as shown by Theilhaber and Alder

(1991).

An example of node violations is shown in Fig. 2.3. All determinants at a time

slice have a positive sign and the predicted distance to the nodes has a reasonable

value greater than 0. However, if one interpolates the coordinates linearly between

two slices and then calculates the determinant and the distance to the node one finds

some points where the path crosses the node. This could not happen if the nodes were

planar. This analysis shows the break down of the nodal action procedure described

in the previous section for too large time steps. In a simulation of hydrogen, one finds

that the pressure becomes unphysically low and even negative. Simultaneously, the

system partially collapses.

Fig. 2.3 also reveals ways to improve the nodal action. One possibility is to

study the classical path that connects the two slices Ri and Ri+1 in order to predict

violations of the nodal surfaces. We propose to use the function,

f(R(t); t) =
ρ(R(t),R∗; t)

ρ(R∗,R∗; t)
(2.103)

and to determine its value and its gradient at the two slices. Those are fit a third

order polynomial and it will be checked if it goes through zero. The reason for

dividing by the term ρ(R∗,R∗; t) is that the magnitude of the density matrix changes

considerably even with a small time interval. Checking for node violations on the

classical path gives rise to an additional restriction for a proposed configuration. In

order to derive a nodal action one needs to study an ensemble of the paths. Due to

the lack of analytical solutions of the diffusion equation for this problem we suggest

to use a set of randomly sampled semi-classical paths,

R(t) = (1− x)Ri + xRi+1 +
∑

k

Qk e
−2πixk with x =

t

τ
− i , (2.104)

37



where Qk are DN dimensional normal-mode vectors that have a Gaussian distribu-

tion. The simplest way is to use only the first mode and to determine the width of

the Gaussian from the free particle density matrix. Practically, one would sample

a number Qk, constructed the corresponding semi-classical paths, perform the fit of

f to the polynomial along each paths and check if the node would be crossed. The

fraction of node avoiding paths would then be used in a metropolis rejection step.

This analysis does predict some of the node violations that could not be detected with

previous method. However, a detailed analysis if it actually improves the efficiency

compare to a simulation with a smaller time step remains to be done.
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Figure 2.3: Demonstration of violations of the nodal surfaces for one configuration of
a hydrogen simulation with too large a time step. The ◦ correspond to the time slice,
at which the sign of the trial density matrix is checked. The solid lines display same
properties on a classical path connecting the slices. The middle graphs shows the trial
density matrix ρ(R(t),R∗; t) divided by ρ(R∗,R∗; t) vs. imaginary time t. The upper
graph exhibits sign of ρ and in the lower graph, the distance to the node from Eq. 2.94.
The sign of this distance indicates, which side of the node the paths is on. The classical
paths exhibits four node crossings the could not be predict using the nodal action from
Eq. 2.93. This fact as well the middle graph demonstrates the nodes are not sufficiently
planar in the time interval τ .
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2.6.8 Distribution of Permutation Cycles

The distribution of permutation cycles has significant effects on the thermodynamics

properties of the studied system since they represent the fermionic character. Here,

we will discuss how it changes with increasing degeneracy.
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Figure 2.4: Comparison of the cycle length distributions (probability of an electron being
involved in a permutation cycle of the length ν) in a PIMC simulation of hydrogen with
32 protons and 16 electrons of each spin state at rs = 1.86 for different temperatures
T using free particle nodes. Decreasing T leads to an increased degeneracy and more
uniform cycle distribution.

In Fig. 2.4, the probability distribution Pν of permutation cycles of different length

ν from PIMC simulations are shown. The normalization is given
∑

ν Pν = 1. We

found that the fraction of 1-cycles P1 is a good candidate to discuss the degree de-

generacy. Beginning at 1 in a non-degenerate system, it decreases with increasing

degeneracy. Simultaneously, states with higher cycle lengths are populated. At first,

odd cycles have a higher probability, while one finds an almost uniform distribution

at high degeneracy. The reason is that the nodal surfaces prohibit even permutations,

which means an even number of even cycles must occur simultaneously and more im-

portantly within the distance of the order of the thermal de Broglie wave length. It

can be shown from the determinant that isolated even cycles would violate the nodes.
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This is also the reason why systems with even numbers of particles cannot form one

long chain (P16 = 0 in Fig. 2.4). At high degeneracy where the thermal de Broglie

wave length is larger than the inter-particle spacing, the nodal constraint does not

discriminate between even and odd cycles.

This observed cycle distribution with fermion nodes is very different from what

one expects from direct fermion methods, where one considers the signs explicitly and

does not use nodal surfaces, e.g. the cycle distribution of a system of non-interacting

fermions can be calculated in the grand canonical ensemble (Feynman, 1972). One has

to differentiate between odd and even cycle lengths leading to positive and negative

contributions to the partition function. Incorporating the sign into Pν , it reads

Pν = (−1)ν 1

n

eνµβ

(4πλβν)3/2
, (2.105)

where the chemical potential µ for given β and density n is determined by the nor-

malization
∑∞

ν=1 Pν = 1. Pν is the rapidly decaying function of ν, which has little in

common with observed cycle distributions from restricted path integrals.

2.6.9 Sampling Procedure

The sampling procedure used in the MC simulations consists of several steps, which

will be briefly described here,

1. Select the time slices to be modified (i . . . i+2k) either at random or by making

random steps with an upper limit.

2. Build a permutation table containing up to 3 particle permutations using the

probability similar to Eq. 2.69

T (P → P ′) ∝ ρ(Ri,P ′Rj; 2
kτ)

ρ(Ri,PRj; 2kτ)
. (2.106)

This can be considered the zeroth step in the multilevel sampling procedure.

Dividing out the current permutation term has the advantage that it lead to

100% acceptance for free particles in the following first slice sampling step. In

the case of fermions and close paths, permutations of a even number of particles

do not enter the table since they will inevitably lead to a violation of the nodes.

3. Determine the new midpoints given by (Ri + P ′Ri+2k)/2, sample the new co-

ordinates from Eq. 2.64 and accept with probability,

A(sk → s′k) = min

{

1 , T (P → P ′) Tk(s
′
k → sk)πk(s

′
k)

Tk(sk → s′k)πk(sk)

}

. (2.107)
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We use only the diagonal part of the pair action at this level. Note that for high

levels where
√
2kλτ is of the order of the box size, corrections to Tk need to be

considered because points in the tail of the Gaussian fall out of the box and are

mapped back in by the periodic boundary conditions. This leads to additional

terms in the probability of sampling a particular point. If this move of rejected

here or at any later stage continue at step 2 or 1.

4. Continue the bisection method based on Eq. 2.66 down to level 1. Consider the

long-range as well as the off-diagonal pair action only at the last level.

5. Perform a Metropolis rejection step on the permutations by calculating the

probability for the reverse move,

A(P → P ′) = min

{

1 ,
C(P)
C(P ′)

1

T (P → P ′)

}

. (2.108)

The factor [T (P → P ′)]−1 cancels with the extra term in Eq. 2.107.

6. Check the nodal surfaces in each slice, verify that ρT (Rt,R
∗; t) > 0.

7. Make a Metropolis rejection step based on the difference in the nodal action,

A(R→ R′) = min

{

1 ,
e−UN (R

′)

e−UN (R)

}

. (2.109)

8. Upon final acceptance, update all coordinates. Continue at step 1 or 2.

Some averages are calculated at every step, others less frequently e.g. only when

one moves to a new section of the paths. In the MC simulation, some displacement

moves are intertwined with the multilevel sampling moves described above. This com-

pletes the description for a simulation with closed paths. The modifications required

for open paths are discussed in chapter 5.
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Chapter 3

Variational Density Matrix Technique

3.1 Analogy to Zero Temperature Methods

Considerable effort has been devoted to systems where finite temperature ions (treated

either classically or quantum mechanically by path integral methods) are coupled

to degenerate electrons on the Born-Oppenheimer surface. In contrast, the theory

for similar systems with non-degenerate electrons (T a significant fraction of TF ) is

relatively underdeveloped except at the extreme high T limit where Thomas-Fermi

and similar theories apply. In this chapter, we present a variational approach for

systems with non-degenerate electrons analogous to the methods used for ground

state many body computations.

Although an oversimplification, we may usefully view the ground state computa-

tions as consisting of three levels of increasing accuracy (Hammond et al., 1994).

1. At the first level, the ground state wave function consists of determinants, for

both spin species, of single particle orbitals often taken from local density func-

tional theory

ψGS(R) =

∣

∣

∣

∣

∣

∣

∣

φ1(r1) . . . φN(r1)

. . . . . . . . .

φ1(rN) . . . φN(rN)

∣

∣

∣

∣

∣

∣

∣

. (3.1)

The majority of ground state condensed matter calculations stop at this level.

2. If desired, additional correlations may be included by multiplying the above

wave function by a Jastrow factor,
∏

i,j f(rij), where f will also depend on the

type of pair (electron-electron, electron-ion). Computing expectations exactly

(within statistical uncertainty), with this type of wave function now requires

Monte Carlo methods.
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3. Finally diffusion Monte Carlo (Ceperley and Mitas, 1996; Foulkes et al., 1999)

methods using the nodes of this wave function to avoid the Fermion problem may

be used to calculate the exact correlations consistent with the nodal structure.

The finite temperature theory proceeds similarly. Rather than the ground state

wave function a thermal density matrix Eq. 2.5 is needed to compute the thermal

averages of operators as shown in Eq. 2.7.

1. At the first level, this many body density matrix may be approximated by

determinants of one-body density matrices, for both spin types, as well as the

ions

ρ(R,R′; β) =

∣

∣

∣

∣

∣

∣

∣

ρ1(r1, r
′
1; β) . . . ρ1(rN , r

′
1; β)

. . . . . . . . .

ρ1(r1, r
′
N ; β) . . . ρ1(rN , r

′
N ; β)

∣

∣

∣

∣

∣

∣

∣

. (3.2)

2. The Jastrow factor can be extended to finite temperatures and the above den-

sity matrix multiplied by
∏

i,j f(rij, r
′
ij; β). In particular, the high temperature

density matrix used in path integral computations has this form.

3. Finally, the nodal structure from this variational density matrix (VDM) will

be used in restricted path integral Monte Carlo simulations as described in

chapter 4. This method has been extensively applied using the free particle

nodes (Pierleoni et al., 1994; Magro et al., 1996). One aim of the approach is

to provide more realistic nodal structures as input to PIMC.

This chapter considers the first level in this approach. The next section is devoted

to a general variational principle which will be used to determine the many body

density matrix. The principle is then applied to the problem of a single particle in

an external potential and compared to exact results for the hydrogen atom density

matrix. After a discussion of some general properties, many body applications are

considered starting with a hydrogen molecule and then proceeding to warm, dense

hydrogen. It is shown that the method and the ansatz considered can describe dense

hydrogen in the molecular, the dissociated and the plasma regime. Structural and

thermodynamic properties for this system over a range of temperatures (T= 5 000 to

250 000K) and densities (electron sphere radius rs = 1.75 to 4.0) are presented.
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3.2 Variational Principle for the Many Body Density

Matrix

The Gibbs-Delbruck variational principle for the free energy based on a trial density

matrix

F ≤ Tr[ρ̃H] + kT Tr[ρ̃ ln ρ̃] (3.3)

where

ρ̃ = ρ/Tr[ρ] (3.4)

is well known and convenient for discrete systems (e.g. Hubbard models) but the

logarithmic entropy term makes it difficult to apply to continuous systems. Here, we

propose a simpler variational principle patterned after the Dirac-Frenkel-McLachlan

variational principle used in the time dependent quantum problem (McLachlan, 1964).

Consider the quantity

I

(

∂ρ

∂β

)

= Tr

(

∂ρ

∂β
+Hρ

)2

(3.5)

as a functional of

Θ ≡ ∂ρ

∂β
(3.6)

I (Θ) = Tr (Θ +Hρ)2 (3.7)

with ρ fixed. I (Θ) = 0 when Θ satisfies the Bloch equation, Θ = −Hρ, and is

otherwise positive. Varying I with Θ gives the minimum condition

Tr [δΘ(Θ +Hρ)] = 0 . (3.8)

This may be written in a real space basis as

∫ ∫

δΘ(R′,R; β) [Θ(R,R′; β) +Hρ(R,R′; β)]dRdR′ = 0 (3.9)

or, using the symmetry of the density matrix in R and R′,
∫ ∫

δΘ(R,R′; β) [Θ(R,R′; β) +Hρ(R,R′; β)]dRdR′ = 0 . (3.10)

Finally, we may consider a variation at some arbitrary, fixed R′ to get

∫

δΘ(R,R′; β) [Θ(R,R′; β) +Hρ(R,R′; β)]dR = 0 ∀R′. (3.11)

It should be noted that in going from Eq. 3.9 to Eq. 3.10 a density matrix symmetric

in R and R′ is assumed, which is a property of the exact density matrix. If the
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variational ansatz does not manifestly have this invariance Eq. 3.11 minimizes the

quantity,
∫

[Θ(R,R′; β) +Hρ(R,R′; β)]2 dR = 0 . (3.12)

This represents the actual variational principle that will be used throughout this work.

By construction, it leads to an approximate solution of the Bloch equation, which we

propose to derive by parameterizing the density matrix with a set of parameters qi

depending on imaginary time β and R′,

ρ(R,R′; β) = ρ(R, q1, . . . , qm) where qi = qi(R
′; β), i = 1, . . . ,m (3.13)

so

Θ(R,R′; β) =
m
∑

i=1

∂qi(R
′; β)

∂β

∂ρ(R, q)

∂qi
=

m
∑

i=1

q̇i
∂ρ

∂qi
. (3.14)

In the imaginary time derivative Θ, only variations in q̇ and not q are considered since

ρ is fixed so,

δΘ(R,R′; β) =
m
∑

i=1

δq̇i(R
′; β)

∂ρ(R, q)

∂qi
. (3.15)

Using this in equation 3.11 gives for each variational parameter, since these are inde-

pendent,
∫

∂ρ

∂qj
(Θ +Hρ)dR = 0 . (3.16)

This is the imaginary-time equivalent to the approach of Singer and Smith (1986)

for an approximate solution of the time dependent Schödinger equation using wave

packets (see section 3.3). Introducing the notation

pi ≡
∂(lnρ)

∂qi
(3.17)

and using Eq. 3.14, the fundamental set of first order differential equations for the

dynamics of the variation parameters in imaginary time follows from Eq.. 3.16 as,

∫

pj ρHρ dR +
m
∑

i=1

q̇i

∫

pj pi ρ
2 dR = 0 (3.18)

or in matrix form
1

2

∂H

∂~q
+
↔
N ~̇q = 0 (3.19)

where

H ≡
∫

ρHρ dR (3.20)
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and the norm matrix

Nij ≡
∫

pi pj ρ
2 dR = lim

q′→q

∂2N

∂qi∂q′j
(3.21)

with

N ≡
∫

ρ(R, ~q ; β) ρ(R, ~q ′ ; β) dR . (3.22)

The initial conditions follow from the free particle limit of the density matrix at high

temperature, β → 0,

ρ(R,R′; β)→ exp
[

−(R−R′)2/4λβ
]

/(4πλβ)3N/2 where λ = 1/2m . (3.23)

Various ansatz forms for ρ may now be used with this approach. After considering

the analogy to real time wave packet molecular dynamics, the principle is first applied

to the problem of a particle in an external field.

3.3 Analogy to Real-Time Wave Packet Molecular Dy-

namics

Wave packet molecular dynamics (WPMD) was first used by Heller (1975) and

later applied to scattering processes in nuclear physics (Feldmeier, 1990) and plasma

physics (Klakow et al., 1994b; Ebeling and Militzer, 1997). An ansatz for the wave

function ψ(qν) is made and the equation of motions for the parameters qν in real time

can be derived from the principle of stationary action (Feldmeier, 1990),

δ

∫

dt L = 0 , L (qν(t), q̇ν(t)) = 〈ψ |i∂t −H|ψ〉 (3.24)

This leads to a set of first order equations, which provides an approximate solution

of the Schrödinger equation. However, this principle cannot be directly applied to

the Bloch equation because there is no imaginary part in the density matrix. For

this reason, we followed in our derivation in section 3.2 the principle by McLachlan

(1964), which minimizes the quantity

∫

|Hψ − iΘ|2 dt, Θ =
∂ψ

∂t
. (3.25)

This method was employed by Singer and Smith (1986) to obtain the dynamical

equations in real time.

The VDM approach and WPMD method share the zero temperate limit, which

is given by the Rayleigh-Ritz principle (see section 3.5.1). At high temperature, the
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width of wave packets in WPMD grows without limits, which is a known problem of

this method (Militzer, 1996; Knaup et al., 1999). In the VDM approach, the correct

high temperature limit of free particles is included. The average width shown in

Fig. 3.11 can be used to verify the attempts to correct the dynamics of the real time

wave packets by Knaup et al. (1999).

3.4 Example: Particle in an External Field

As a first example, we apply this method to the problem of one particle in an external

potential

H = −λ∇2 + V (r) . (3.26)

The one-particle density matrix will be approximated as a Gaussian with mean m,

width w and amplitude factor D,

ρ1(r, r
′, β) = (πw)−3/2 exp

{

− 1

w
(r−m)2 +D

}

(3.27)

as variational parameters. The initial conditions at β −→ 0 are w = 4λβ, m = r′

and D = 0 in order to regain the correct free particle limit, Eq. 3.23. For this ansatz

H, defined in Eq. 3.20 as

H ≡
∫

ρHρ dr =
(

3λ

w
+ V [0]

)

e2D

(2πw)3/2
(3.28)

where

V [n] ≡
(

2

πw

)3/2 ∫

(r−m)nV (r)e−2(r−m)2/wdr (3.29)

and

N ≡
∫

ρρ′dr = [π(w +w′)]−3/2 exp
{

−(m−m′)2/(w + w′)
}

exp(D +D′) . (3.30)

From Eq. 3.19, the equations for the variational parameters are,

ẇ = 4λ+ 2wV [0] − 8

3
V [2] (3.31)

ṁ = −2V[1] (3.32)

Ḋ =
1

2
V [0] − 2

w
V [2] . (3.33)

In absence of a potential, the exact free particle density matrix is recovered. The

harmonic oscillator case is also correct since the Gaussian approximation is exact
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there. For a hydrogen atom, λ = 1/2, V (r) = −1/r and

V [0] = − 1

m
erf
(

m
√

2/w
)

(3.34)

V[1] =
m

m3

w

4

[

erf
(

m
√

2/w
)

−
√

8

πw
e−2m

2/w

]

(3.35)

V [2] =

√

w

2π
e−2m

2/w +
3w

4
V [0] . (3.36)

At low temperature, the density matrix as a function of r goes to the ground state

wave function as discussed in more detail in the next section. One expects this to

be a fixed point of the dynamics of the parameters m and w determined by ṁ = 0

and ẇ = 0 while Ḋ = −E0. The β → ∞ fixed point: m = 0, w = 9π/8, Ḋ = 4/3π

corresponds to the well known Rayleigh-Ritz variational result for a Gaussian trial

wave function

Ψ0(r) =

(

4

3π

)3/2

exp(−8r2/9π) . (3.37)

In ground state variational studies, addition of two more Gaussians brings the ground

state energy to within 0.6% of the exact value and similar improvement would be

obtained here.

Results at finite β require a numerical solution, which is illustrated in the figure

below comparing the Gaussian variational density matrix with the exact (Pollock,

1988) and the free particle density matrix at several temperatures for the initial

condition r′ = 1. At high temperatures (β = 0.05 and β = 0.25) the Gaussian

approximation correctly reproduces the limiting free particle density matrix. At lower

temperatures, the cusp in the exact density matrix due to the Coulombic singularity

at the proton becomes evident and the peak shifts to the origin somewhat faster

than the Gaussian variational approximation. As β increases the exact result grows

faster than the variational since the correct energy, −0.5, is lower than −4/3π but

the Gaussian variational approximation remains rather accurate for r > 1. The free

particle density matrix remains centered at r = 1 and beyond β = 0.5 (T = 54.4 eV)

bears little resemblance to the correct result.

3.5 Variational Density Matrix Properties

3.5.1 Zero Temperature Limit

In the preceding section, it was shown that for the hydrogen atom the Gaussian

variational density matrix, as a function of R converges at low temperature to the
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Figure 3.1: Comparison of the Gaussian variational approximation (circles) with the
exact density matrix ρ(r, r′; β) (solid line) for a hydrogen atom. The free particle density
matrix (dashed line) is also shown. The plotted r is along the line from the proton at the
origin (marked by the vertical bar) through the initial electron position r′ = 1.

Gaussian ground state wave function given by the Rayleigh-Ritz variational princi-

ple. It is generally true that the Rayleigh-Ritz ground state corresponds to the zero

temperature limit of the VDM as we now show.

The Rayleigh-Ritz principle states that for any real parameterized wave function

Ψ(R, q1, . . . , qm) the variational energy

E({q}) =
∫

ψ(R)Hψ(R) dR
∫

ψ(R)2 dR
(3.38)

is greater than or equal to the true ground state energy even at the minimum deter-

mined by

∂

∂qk
E({q}) = 0 ∀k . (3.39)

For the VDM ansatz, an amplitude parameter D is assumed such that

ρ(R,R′; β) = eD(R
′;β)ρ̃(R, {q(R′; β)}) . (3.40)
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As in the one particle example, it is expected that at low temperature, β → ∞, the

other q̇k → 0 while Ḋ → constant. From this assumption, Eq. 3.19 implies that as

β →∞
∂H

∂qk
+ Ḋ

∂N

∂qk
= 0 (3.41)

for all variational parameters, where we have defined H ≡
∫

ρHρ dR and N ≡
∫

ρ2 dR. Since ∂H/∂D = 2H and ∂N/∂D = 2N , Eq. 3.41 for qk ≡ D implies

Ḋ = −H/N ≡ −E0. So Eq. 3.41 may be rewritten as

∂

∂qk

(

H

N

)

= 0 (3.42)

at the β →∞ fixed point. With the correspondence

ρ(R, {q(R′, β)})→ eD(R
′;β)ψ(R, {q}) , (3.43)

this is equivalent to Eq. 3.39 and thus the Rayleigh-Ritz ground state corresponds to

a zero temperature fixed point in the dynamics of the parameters.

D is a function of R′ and β, which is calculated by integrating from β = 0 with

Eq. 3.23 as initial conditions. The zero temperature limit of Ḋ is a constant, −E0,
which means in the low temperature limit D can written as

D(R′; β) = −βE0 + f(R′) . (3.44)

The function f(R′) can be rewritten as,

f(R′) = ln {ψ0(R′) [ 1 + δ(R′) ]} , (3.45)

where the function δ(R′) is introduced to describe the variational error in the solution

of the Bloch equation. It is identical to zero if the variational ansatz includes the exact

solution. It leads to loss of symmetry in R and R′, which will discussed in the next

section. Eq. 3.43 now reads,

ρ(R,R′, β →∞) = e−βE0ψ0(R)ψ0(R
′) [1 + δ(R′)] . (3.46)

For certain potentials, several fixed points of the dynamics can exist. From

Eq. 3.46, it follows that only the lowest energy state contributes to physical observ-

ables calculated from Eq. 2.4. This completes the argument that the zero temperature

limit of the VDM corresponds to the Rayleigh-Ritz ground state.

In the case of an anti-symmetrized ansatz for the density matrix, it can be shown

that the fixed point of the dynamics in imaginary time corresponds to the Rayleigh-

Ritz ground state for an anti-symmetrized wave function.
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Figure 3.2: D(r, β) from the Gaussian approximation in the ground state limit (solid
line) of the hydrogen atom. Deviations of this function from linearity indicate a breakdown
of symmetry in the Gaussian approximation for ρ(r, r′; β). The dashed line is −8r2/9π+
4β/3π + 3/2 ln 2 expected from the Rayleigh-Ritz ground state Eq. 3.37.

3.5.2 Loss of Symmetry

The exact density matrix is symmetric under R ↔ R′. Since we have singled out

R′ as the initial point for the imaginary time dynamics, it is not clear that the

approximation given in Eq. 3.27 automatically satisfies this condition. For the free

particle limit and the harmonic oscillator, where the Gaussian is the exact solution,

it obviously does but in general it does not.

As a specific example, we consider again the ground state limit of the hydrogen

atom in the Gaussian approximation. Using the ground state values for the variational

parameters, m = 0 and w = 9π/β, Eq. 3.27 becomes,

lim
β→∞

ρ(r, r′; β) = eD(r
′;β) (8/9π2)3/2e−8r

2/9π . (3.47)

For this to be symmetric under r↔ r′, we must have

lim
β→∞

D(r′; β) = −8r′ 2/9π + c(β) (3.48)

and from the result for Ḋ, limβ→∞ c(β) = 4β/3π + c1.

Figure 3.2 compares the D(r, β) from the Gaussian VDM with Eq. 3.48 using

c(β) = 4β/3π + 3/2 ln 2.
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There are several consequences of this small violation of R ↔ R′ symmetry. As

shown generally in the section above, in the β → ∞ limit −Ḋ is the Rayleigh-Ritz

variational ground state energy for a Gaussian wave function, which for the hydrogen

atom is E0 = −4/3π = −0.4244. Because of the loss of symmetry this is not the same

as the energy given by the estimator

〈E〉 = 〈H〉 ≡ Tr[Hρ]
Tr[ρ]

(3.49)

in the β → ∞ limit, which for the hydrogen atom gives the more accurate result

〈E〉 = −0.4709. This will be seen again below for the hydrogen molecule where

Eq. 3.49 also gives more accurate ground state energies. Other consequences are less

pleasant. Although the energy is more accurate the virial theorem, 〈K〉 = −〈U〉 / 2,
between the kinetic and potential energy is violated by about 3% (while both are

more accurate than the usual ground state variational Gaussian result). This has

consequences for calculating the equation of state particularly at low density. Slightly

more complicated, explicitly symmetric forms for the VDM could be used but in this

paper we will continue to explore the basic Gaussian approximation.

3.5.3 Thermodynamic Estimators

Since the VDM, except in the simplest cases, is not exact various estimators for the

same quantity will differ. For example the variational principle introduced in section

II consists essentially in globally minimizing the squared difference between ∂ρ/∂β

and Hρ, either of which can be used in estimating the energy. As mentioned above

the energy estimator Eq. 3.49 and its kinetic and potential energy pieces do not

automatically satisfy the virial theorem for Coulomb systems at low density. As an

alternative to Eq. 3.49, one can use the thermodynamic estimators,

〈E〉 = −
〈

∂

∂β
ln ρ

〉

, (3.50)

〈K〉 = −λ
β

〈

∂

∂λ
ln ρ

〉

, (3.51)

〈V 〉 = −e
2

β

〈

∂

∂e2
ln ρ

〉

(3.52)

for the total, kinetic and potential energy where 〈 . . . 〉 denote thermal averages cal-

culate from Eq. 2.4. These estimators satisfy

〈E〉 = 〈K〉+ 〈V 〉 (3.53)
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by the following argument. Any function f = f(βλ, βe2) satisfies

β
∂f

∂β
= λ

∂f

∂λ
+ e2

∂f

∂e2
. (3.54)

From Eq. 3.19 it follows that all parameters qi = qi(R
′; β, λ, e2) have this property

and therefore so does the variational density matrix.

In the zero temperature limit, the thermodynamic estimators satisfy the virial

theorem, which is also satisfied by any exact and any variational Rayleigh-Ritz ground

state. From the zero temperature limit of the VDM given by Eq. 3.46 and the 1/β

factor in Eqs. 3.51 and 3.52, it is seen that the symmetry error δ(R′) is unimportant

in this limit. It should be noted that calculating the derivatives for 〈K〉 and 〈V 〉
increases the numerical work. The pressure is estimated from

3 〈P 〉V¦ = 2 〈K〉+ 〈V 〉 , (3.55)

where V
¦

is the volume of the simulation cell.

3.6 Variational Many-Particle Density Matrix

We represent the many-particle density matrix by a determinant of one-particle den-

sity matrices (Eq. 3.79). It can written as,

ρ(R,R′, β) =
∑

P
εP
∏

k

ρ1(rk, r
′
Pk , β) (3.56)

=
∑

P
εPe

D
∏

k

(πwPk)
−3/2 exp

{

− 1

wPk
(rk −mPk)

2

}

, (3.57)

where a factor 1/N ! was dropped. The permutation sum is over all permutations

of identical particles (e.g. same spin (Sz) electrons) and the permutation signature

εP = ±1. The initial conditions for Eq. 3.19 are wk = 0, mk = r′k, and D = 0. For

this ansatz the generator of the norm matrix, Eq. 3.22 is,

N = exp(D +D′)
∑

P
εP
∏

k

[π(wk + w′Pk)]
−3/2 exp

{

−(mk −m′
Pk)

2/(wk + w′Pk)
}

.

(3.58)

For a periodic system the above equation is also summed over all periodic simulation

cell vectors, L, with mk −mPk →mk −mPk +L. If only the identity permutation is

considered the norm matrix is easily inverted so that Eq. 3.19 gives

ẇk = −2wkHD −
8

3
w2kHwk

(3.59)
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ṁk = −wkHmk
(3.60)

Ḋ = −
(

3

2
n+ 1

)

HD − 2
n
∑

i=1

wiHwi
, (3.61)

where Hqk =
1

2

∂H

∂qk
. (3.62)

For systems of electrons and ions the full expression for Hqk and the norm matrix are

derived in App. A.
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Figure 3.3: Gaussian approximation for the ground state of a hydrogen molecule for
bond length R. The top left panel shows the Gaussian mean parameter m for the two
electrons. These stay in the center of the bond (m = 0) until about R = 2 and then
attach themselves to the separating protons (± R/2). The width parameter, displayed
in the lower left panel, makes the transition from the optimal value for a helium atom,
R = 0, to the hydrogen atom result w = 9π/8 at large R. The right panel shows the
dissociation energy for the singlet state computed from Eq. 3.49 (open circles with error
bars) and the thermodynamic estimator (−dD/dβ) (dashed line) compared to the exact
results of Kolos and Roothan (solid line).

Application to an isolated hydrogen molecule at low temperature is shown in

Figure 3.3. This is for the singlet state (anti-parallel electron spins). The triplet

state is considered later after a discussion of how to treat permutation terms in the

parameter equations. The bond length at minimum energy is 1.47, compared with the

experimental value of 1.40. The direct energy estimator Eq. 3.49 gives a dissociation

energy of 4.50 eV at the minimum compared to the experimental value of 4.75 eV.

Beyond R = 2, the energy rises quickly toward the value given by the Rayleigh-Ritz

estimator −dD/dβ.
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3.7 Antisymmetry in the Parameter Equations

The determinantal form for the VDM, Eq. 3.56, is correctly antisymmetric under

exchange of identical particles. Since ion exchange effects are negligible at the tem-

peratures considered here these are ignored.

The determinantal form leads to N ! terms in the equations of motion for the

variational parameters presented in appendix A. It was originally hoped that exchange

effects could be ignored in these equations while retaining the full determinantal form

for the VDM but this leads to an instability in fermionic systems, e.g. it results in

an unphysical strong attraction between two hydrogen molecules.

A practical means of treating all exchange terms, in particular terms involving the

potential energy, in the variational parameter equations was not found. Instead it was

necessary to use an approximation similar to that used in the real time computations

(Klakow et al., 1994b; Knaup et al., 1999): only pair exchanges in the kinetic energy

terms were retained. This will be illustrated for the hydrogen molecule after first

giving the explicit form for this correction. It is stressed that, unlike the real time

computations, once the variational parameters are determined the full determinantal

form is then used in calculating the various averages.

For two particles with parallel spin, the correction term to the kinetic energy is

given by,

∆K =
NI

NAS

∫

dR ρAS K̂ ρAS −
∫

dR ρI K̂ ρI (3.63)

ρAS = ρ1(r1)ρ2(r2)− ρ2(r1)ρ1(r2) , ρI = ρ1(r1)ρ2(r2) (3.64)

NAS =

∫

dR ρ2AS , NI =

∫

dR ρ2I (3.65)

For the Gaussian ansatz in Eq. 3.56 it becomes,

∆K = −4λNI

wNQ

[

3
(

1− w̃2
)

−Q2
]

, (3.66)

w = w1 + w2 , w̃ =
w

2
√
w1w2

, (3.67)

Q2 =
2

w
(m1 −m2)

2 , NQ = w̃3eQ
2 − 1 . (3.68)

The corrections to the norm matrix N are neglected in order to keep its analytically

invertible form. The corrections to Hqk in Eq. 3.62 are given by

∆Kqk =
1

2NI

∂

∂qk
∆K (3.69)
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The correction to dynamics of the parameters follow from Eq. 3.59 to 3.61,

∆ẇ1 = −2w1
(

∆KD +
4

3
w1 ∆Kw1

)

(3.70)

∆ṁ1 = −w1 ∆Km1 (3.71)

∆Ḋ = −2 (∆KD + w1 ∆Kw1 + w2 ∆Kw2) . (3.72)

These equations lead to an effective repulsion between the Gaussians for two electrons

with parallel spin if there is significant overlap. As a example of this effect the

variational parameters for the singlet and triplet states of the hydrogen molecule are

compared in Fig. 3.4. For the triplet state parameters, the solution including full

exchange effects (long dashed line) are compared with those obtained in the kinetic

pair exchange approximation (dot-dashed line). The approximation now prevents the

Gaussian means for the same spin electrons from collapsing to the bond center at

lower temperature and is numerically close to the solution for full exchange.

Even at the lowest temperature considered here in the dense hydrogen simulations

(5000 K) exchange effects between same spin electrons are negligible beyond a few

angstroms, i.e. one or perhaps two nearest neighbors. Fig. 3.4 for the triplet state

thus overestimates the effect likely in dense hydrogen. The main effect of including

exchange in the parameter equations is probably to prevent the instability mentioned

above.

Fig. 3.5 shows an energy comparison for the triplet ground state of the hydro-

gen molecule. First, we compare the Gaussian approximation using only the kinetic

exchange term in the parameter equations. For the direct estimator, Eq. 3.49, one

finds fairly good agreement with the accurate quantum chemistry result (Kolos and

Roothan, 1969). The thermodynamic estimator gives a somewhat more repulsive

triplet interaction for R > 2. Considering also the Coulomb exchange terms in the

Gaussian approximation leads to the dot-dashed line for the thermodynamic estima-

tor. We conclude that leaving out the Coulomb exchange terms in the parameter

equations for efficiency reasons is a reasonable approximation in many-particle simu-

lations.

3.8 Results from Many-Particle Simulations

In this section, we report results from VDM Monte Carlo simulation with 32 pairs

of protons and electrons in the temperature and density range of 5 000K≤ T ≤
250 000K and 1.75 ≤ rs ≤ 4.0. Particle configurations are generated by sequencing
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Figure 3.4: Effect of antisymmetry on the density matrix parameters, width and mean,
for a hydrogen molecule. The protons (large black dots along x axis) are separated by 1.8
and the initial electron positions re(β = 0) = ±1.5 along the molecular axis. The solid
line for the singlet state (electron spins anti-parallel) shows both electrons centered in the
molecular bond at low temperatures (large β). In the triplet state (parallel electron spins),
the electrons are centered close to the protons (long dashed line). The approximation that
includes only kinetic exchanges (dot-dashed line) gives a similar result for the mean, with
the electrons centered slightly inside the protons but overestimates the Gaussian width
(left panel). At high temperature (β ≤ 4), exchange is unimportant and the parameters
are nearly the same for all cases.

over all particles, giving the particle a uniform displacement, computing the new den-

sity matrix from Eqs. 3.19 and 3.13, and accepting or rejecting the new configuration

by the Metropolis algorithm. This is completely analogous to the usual Monte Carlo

ground state variational calculations except for the additional work of determining

the variational parameters based on the proposed configuration.

Although the Gaussian ansatz VDM will be seen to provide a reasonable model for

hydrogen over the full density and temperature regime, the main purpose in presenting

these results is to serve as a base for documenting future improvements from better

VDMs and the application to PIMC.

The proton-proton pair correlation functions are shown in Fig. 3.6. For tempera-

tures below 20 000K, a peak emerges near 1.4 that demonstrates clearly the formation

of molecules. The comparison with PIMC simulations (Magro et al., 1996; Militzer

and Ceperley, 2000) at low density shows that the peak positions agree well but PIMC

predicts a significantly bigger height indicating a larger number of molecules. This
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Figure 3.5: Energy of repulsion for the triplet ground state of the hydrogen molecule
for bond length R. The thermodynamic (dashed line) and the direct estimator, Eq. 3.49,
(circles with error bars) for the Gaussian approximation using the kinetic exchange term
in the parameter equations are compared with the Kolos and Roothan results (solid line).
The thermodynamic estimator for the Gaussian approximation with all exchange terms is
shown by the dot-dashed line.

could be explained by the missing correlations in the VDM ansatz.

At a density of rs = 2.0, proton-proton pair correlation functions from PIMC and

VDM are almost identical. If the peak is sufficiently separated from the remaining

curve, the area under the peak multiplied by the density gives an estimate for the

molecular fraction. By comparing the estimate for different densities at 5 000K, one

finds that the molecular fraction is diminished when the density is lowered below that

corresponding to rs = 2.0. This effect is well-known and is a result of the increased

entropy of dissociated molecules, which leads to complete dissociation and ionization

in the low density limit at non-zero temperatures.

Considerable differences between the proton-proton pair correlation functions are

found at rs = 1.75 below T = 20 000K where VDM shows a fair number of molecules

while PIMC predicts a metallic fluid where all bonds are broken as a result of pressure

dissociation (Magro et al., 1996; Militzer et al., 1999). This effect has to be verified

by PIMC simulations with VDM nodes because free particle nodes could enhance

the transition to a metallic state. Proton-proton pair correlation functions from

additional VDM simulations for rs = 1.5, 1.25, and1.0 are shown in figure 3.7. The

VDM method exhibits a smooth transition from a molecular to a atomic structure,
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Figure 3.6: Proton-proton pair correlation function from VDM (solid line) and PIMC
(dashed lines at rs=1.75, 2.0, and 4.0 for T ≤ 125 000K).
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in which the molecular binding is gradually reduced with increasing density.

The position of the peak of the proton-proton pair correlation functions shifts

from 1.45 at the lowest density, corresponding to rs = 4.0, to 1.3 at rs = 1.75. The

same trend has been found in the PIMC simulations (Magro et al., 1996) but the

opposite was reported in (Galli et al., 2000; Rescigno, 1999).
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Figure 3.7: Proton-proton pair correlation function from VDM (solid line) and PIMC
(dashed lines at rs=1.75 for T ≤ 125 000K).

In the proton-electron pair correlation functions shown in Fig. 3.8, one finds a

strong attraction present even at high temperatures such as 250 000K. At low tem-

peratures, the electrons are bound in atoms and molecules. This pair correlation

function does not show a clear distinction between the two cases. From studying the
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Figure 3.8: Proton-electron pair correlation functions from VDM (solid line) and PIMC
(dashed lines at rs=1.75, 2.0, and 4.0 for T ≤ 125 000K).
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height of the peak at the origin multiplied by the density, one can make compar-

isons of the number of bound electrons at low temperature. Similar to the molecular

fraction, one finds a reduction of bound electrons with decreasing density below that

corresponding to rs = 2.0. The comparison with PIMC shows that VDM underesti-

mates the height of the peak. This is probably a result of the Gaussian ansatz, which

does not satisfy the cusp condition at the proton.

Fig. 3.9 shows the effect of the Pauli exclusion principle leading to a strong repul-

sion for electrons in the same spin state. This effect is not present in the interaction

of electrons with anti-parallel spin displayed in Fig. 3.10. There one observes the

effect of the Coulomb repulsion at high temperature. At low temperature, one finds

a peak at the origin as a result of the formation of molecules, in which two electrons

of opposite spin are localized along the bond. The differences from the PIMC graphs

can be interpreted as a consequence of the different molecular fractions observed in

Fig. 3.6.

The average squared width w of the Gaussian is shown in Fig. 3.11 as a function

temperature and density. At high temperature and low density, one finds only small

deviations from the free particle limit. These become more significant with increas-

ing density and decreasing temperature. At low temperature, the attraction to the

protons dominates, which leads to a decreasing average width. Finally bound states

form and the width approaches a finite limit. At low densities, this is close to the

ground state squared width of the isolated molecule, 3.138. It should be noted that

in the limit of very high density, one expects the Gaussians orbitals to be almost as

delocalized as the free particle solution because the Coulomb interaction is then a

correction to the dominating kinetic terms. This limit does not seem to be repre-

sented correctly in this VDM ansatz. The current VDM orbital are too localized in

the limit of high density. We interpret this as an effect of the insufficiently accurate

treatment of the exchange terms described in section 3.7. In particular, one would

need to include corrections to the norm matrix, which where left out because of the

drastic increase in the numerical requirements.

In Fig. 3.12, we compare the internal energy from the thermodynamic estimator

in Eq. 3.50 and the direct estimator in Eq. 3.49. Both agree fairly well at low density.

Differences build up with increasing density and decreasing temperature. Comparing

with PIMC simulations, one finds that the VDM energies are generally too high. The

magnitude of this discrepancy shows the same density and temperature dependence

as the difference between the two VDM estimators. The difference from the PIMC

results could be explained by the missing correlation effects in the VDM method.
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At high temperature, the thermodynamic estimator always gives lower energies

than the direct estimator. Below T = 25 000K, the ordering is reversed. This is con-

sistent with the results from the isolated atom and molecule. The consequence is that

the direct estimator is actually closer to the value expected from PIMC simulations.

However, it should be noted that this estimator is not thermodynamically consistent

(see section 3.5.2).

In Fig. 3.13, we compare pressure as a function of temperature and density from

the two VDM estimators with PIMC results. At low density, the agreement is remark-

ably good. With increasing density and decreasing temperature, the difference grows.

For densities over rs = 2.0 below 10 000K, one finds a significant drop in the direct

estimator for the pressure. We interpret this effect as a result of the thermodynamic

inconsistency.

Fig. 3.14, compares the Hugoniot from laser shock wave experiments (Da Silva

et al., 1997; Collins et al., 1998) with VDM and PIMC results. VDM direct estimator

(DE, full diamonds, Eq. 3.49) and VDM thermodynamic estimator (TE, full circles,

Eq. 3.50-3.52)). The long dashed line indicates the theoretical high pressure limit

ρ = 4ρ0 of the fully dissociated non-interacting plasma. In the experiments, a shock

wave propagates through a sample of precompressed liquid deuterium characterized

by its initial state, (E0, V
¦

0, p0). Assuming an ideal shock front, the variables of the
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Figure 3.12: Internal energy per atom versus temperature from the VDM using the
thermodynamic (TE, Eq. 3.50) and direct estimator (DE, Eq. 3.49) compared with PIMC
results.

shocked material (E, V
¦

, p) satisfy the Hugoniot relation (Zeldovich and Raizer, 1966)

(see section 4.6 for details),

H = E − E0 +
1

2
(V
¦ − V¦0)(p+ p0) = 0 . (3.73)

The initial conditions in the experiment were T = 19.6K and ρ = 0.171 g/cm3. We

set p0 = 0 because p0 ¿ p. We show two VDM curves based on the thermodynamic

and direct estimators. For E0, we use the corresponding value of the ground state of

the isolated hydrogen molecule, ETE
0 = −0.955 and EDE

0 = −1.124.
We expect the difference of the two estimators to give a rough estimate of the

accuracy of the VDM approach. At high temperature, the difference is relatively small

and agreement with PIMC simulations is reasonable. Both VDM estimators indicate
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modynamic (TE, Eq. 3.51 and 3.52) estimators for kinetic and potential energy.

that there is maximal compressibility around 1.5 Mbar. Furthermore, significant

deviations are found from the experiments except for may be the lowest pressure point

of 0.25Mbar. However, in this regime of high density and relatively low temperature

a more careful study seems unavoidable. In section 4.6, we give a more detailed

discussion on the Hugoniot that include predictions from other method and results

from PIMC simulations using the VDM nodal surface to restrict the paths.
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3.9 Extensions of the Gaussian Ansatz

There are several ways the VDM based on the Gaussian ansatz Eq. 3.27 can be

improved. First of all, one can write it as a two step path integral,

ρ(R,R′; β) =

∫

dR′′ ρ(R,R′′; β/2) ρ(R′′,R′; β/2) (3.74)

=

∫

dR′′ ρ(R, ~q(R′′; β/2)) ρ(R′′, ~q(R′; β/2)) . (3.75)

This has the advantage of using a density matrix at higher temperatures correspond-

ing to β
2
, which makes the method more accurate. In a MC simulation sampling Trρ,

one would keep two sets of coordinates R = R′ and R′′ as done for path integrals,

integrate the parameter equations with the initial conditions atR andR′′ up to β
2
and

evaluate the integrand in Eq. 3.75 rather than calculating ρ(R,R; β) as done in all

simulations discussed previously. The method of matrix squaring cannot be applied

further without introducing minus signs, which lead to the fermion sign problem and

would also require nodes.

Alternatively, one can try an approximation to the convolution in Eq. 3.74,

ρ(R,R′; β) ≈
∫

dR′′ ρ(R′′,R; β/2) ρ(R′′,R′; β/2) (3.76)
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≈
∫

dR′′ ρ(R′′, ~q(R; β/2)) ρ(R′′, ~q(R′; β/2)) , (3.77)

which has the advantage of being symmetric in R and R′ unlike the ansatz used

throughout this work, which was discussed in section 3.5.2. It would also simplify an

MC simulation, because one would need only one set of coordinates R, derive one set

of variational parameters and could perform convolution analytically,

ρ(R,R; β) ≈
∫

dR′′ [ ρ(R′′, ~q(R; β/2)) ]
2

. (3.78)

Furthermore, the Gaussian ansatz can be improved by including additional varia-

tional parameters, e.g. to use a sum of Gaussians. In the zero temperature limit, this

would lead to a solution closer to the Hartree Fock result. To go beyond one needs

to include additional correlations in the ansatz and derive modified equations for the

parameter from Eq. 3.19. Correlations are usually introduced with a Jastrow factor,

which can be generalized to finite temperature. The new ansatz then reads,

ρ(R,R′; β) =

∣

∣

∣

∣

∣

∣

∣

ρ1(r1, r
′
1; β) . . . ρ1(rN , r

′
1; β)

. . . . . . . . .

ρ1(r1, r
′
N ; β) . . . ρ1(rN , r

′
N ; β)

∣

∣

∣

∣

∣

∣

∣

exp

{

−1

2

∑

i<j

u(rij) + u(r′ij)

}

,

(3.79)

where u depends on the type of pair (electron-electron, electron-ion). It contains

extra parameters, that depend in temperature but we suggest to consider them as

fixed in the variational principle. The consequence for the parameter equation is that

there are additional terms to the norm matrix and, further, most integrals cannot be

expressed analytically.

Alternatively, one can use an unitary correlation operator as suggested by Schnack

(1996). The idea is to applied a short range correlation operator to an uncorrelated

state in order to generate a correlated state. The fundamental difference to the

Jastrow type ansatz above that correlations are introduced by the operator.

Another improvement for many-particle simulations would be to consider all N !

terms from the permutations, which would make contributions at very high levels of

degeneracy. The scaling of a full exchange method can be reduced to N 4 as suggested

by Schnack (1996) for real time wave packet molecular dynamics but the application

of this method to the VDM imaginary time remains to be done.

To summarize, one can say that the VDM approach provides a way to systemat-

ically improve the many-particle density matrix. Already the simplest ansatz using

one Gaussian to describe the single particle density matrices gives a good description

of hydrogen in the discussed range of temperature and density. The method includes
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the correct high temperature behavior and shows the expected formation of atoms

and molecules. The thermodynamic variables are in reasonable agreement with PIMC

simulations and lead to a good approximation of the Hugoniot function. Further one

can use this essentially analytic density matrix to furnish the nodal surface in PIMC

simulations, replacing the free particle nodes by a density matrix that already includes

the principle physical effects. Results will be discussed in the next chapter.
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Chapter 4

Thermodynamic Properties of Dense

Hydrogen

In this chapter, the main results from the PIMC simulations of hot, dense hydrogen

and deuterium will be discussed. We start with a brief study of the accuracy of the

pair density matrix for the isolated hydrogen atom and molecule. Then we show

results from many-particle simulations. Special emphasis is put on the comparison of

variational and free particle nodes. The development of the VDM in chapter 3 (Mil-

itzer and Pollock, 2000a,b) and its application as nodal surface in PIMC simulations

is one of the key points of this work. In this context, we discuss the high temperature

phase diagram and study the effects of an improved nodal surface. We look at the

pair correlation functions as well as the permutation probabilities of the electrons.

Both will be used to review the predicted first order plasma phase transition by Ma-

gro et al. (1996). It will be shown that these results do change drastically if the VDM

nodes are used instead of FP nodes. Following this discussion, we show results for

densities and temperatures where the precise shape of the nodes is not important,

discuss pressure and internal energy, and compare with results from other models and

simulation methods. Finally, we give a detailed comparison with the laser shock wave

experiments.

4.1 Accuracy of the Pair Density Matrix

The pair density matrices are calculated using the matrix squaring method described

in section 2.3.1. They are stored in tables using the expansion formula Eq. 2.38 and

then entered into the PIMC simulation program. The accuracy of these tables is

crucial for all following results. Using the precomputed pair density matrices allows
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Figure 4.1: Internal energy (left graph) and 2K + V (right graph) for an isolated
hydrogen atom as a function of the number of time slices at constant temperature of
10 000K.

one to employ a much larger time step because one starts with a solution of the

two-particle problem. Fig. 4.1 shows how accurate this method is. The internal

energy of an isolated hydrogen atom at sufficiently temperature (T = 10 000K) in a

large box (L = 26) is compared with the exact groundstate energy of −13.6 eV. The

temperature was chosen low enough so that excited states can be neglected e.g. the

contribution to the energy from the occupation of first excited state is 7 · 10−5 eV at

this temperature. Furthermore, it is tested whether the kinetic energy K and the

potential energy V satisfy the virial theorem 2K + V = 0. If only diagonal action

terms are considered in Eq. 2.38 one finds a rather slow convergence as function of the

number of time slices (Fig. 4.1). Eventually, the error goes to zero in the Trotter limit,

Eq. 2.24, of an infinite number of slices. Using off-diagonal terms in the expansion

formula, Eq. 2.38, improves the convergence significantly as shown in Fig. 4.1. One

can use different orders to calculate the action nA and the energy nE. The resulting

accuracy from different orders is shown in Tabs. 4.1 and 4.2. It reveals that using

order 2 or higher instead of order 1 in the action decreases the errors by almost one

order of magnitude. This is an important observation because most many-particle

simulations reported in this work had been performed with nA = 1 and nE = 2 (which

was found to be sufficient for simulations of Helium particles) before this analysis was

done. Because of the resulting inaccuracies, the estimated energies and pressures are

slightly too high.

These inaccuracies have also consequences for the isolated hydrogen molecule,

which are important to study in order to determine the corrections of results from

many particle simulations. The virial theorem for an isolated H2 molecular with fixed
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Table 4.1: Accuracy study of PIMC simulations of the isolated hydrogen atom using
different orders in the expansion formula 2.38 for the action and the energy. The calculated
2K + V (exact value equals zero) and the deviation of the potential energy V from the
exact value of -27.2 eV are listed from simulations at T = 10 000K using 100 time slices
and τ−1 = 106K.

2K + V (eV) V − Vexact (eV)

energy action order action order

order 0 1 2 3 0 1 2 3

0 0.8 (1) 1.74 (3)

1 0.47 (2) -0.18 (3) -0.071 (25) -0.176 (08) 0.074 (11) 0.043 (07)

2 0.56 (2) -0.07 (3) 0.013 (48) -0.166 (05) 0.063 (09) 0.034 (13)

3 0.61 (4) -0.06 (3) 0.039 (08) -0.183 (11) 0.056 (11) 0.031 (03)

Table 4.2: Accuracy study of PIMC simulations using different order in the action and
energy expansion as in Tab. 4.1 but with a larger time step of τ−1 = 0.5 · 106K and 50
time slices.

2K + V (eV) V − Vexact (eV)

energy action order action order

order 0 1 2 3 0 1 2 3

0 1.24 (7) 1.991 (28)

1 0.46 (4) -0.12 (5) -0.074 (12) 0.033 (12)

2 0.51 (4) -0.07 (2) -0.067 (13) 0.044 (07)

3 0.03 (2) 0.036 (7)

Table 4.3: Accuracy analysis for the isolated hydrogen molecule for different time steps
and temperatures using nA = 3 and nE = 3. In this analysis, the nuclei are classical
and fixed at the bond length of R = 1.4008. 2K + V (exact value equals zero) and the
deviations from the exact binding potential energy per atom −31.946 eV are listed.

2K + V (eV) V − Vexact (eV)

τ−1 (106K) τ−1 (106K)
T (K)

0.5 1 2 0.5 1 2

7812 0.41 (3) 0.16 (3) -0.06 (8) -0.422 (10) -0.112 (8) 0.030 (22)

3906 0.41 (3) 0.19 (3) 0.14 (4) -0.419 (07) -0.110 (5) -0.008 (11)

1953 0.43 (3) 0.16 (2) 0.08 (3) -0.421 (12) -0.115 (9) -0.009 (09)
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nuclei at separation R reads (Kolos and Wolniewicz, 1964; Steiner, 1976),

2K + V = −R dE

dR
. (4.1)

This means one can calculate the kinetic and potential energy from E(R) and its

derivative using E = K + V . In Fig. 4.2, the exact results by Kolos and Wolniewicz

(1964) for E and 2K + V are compared with the PIMC calculations. It shows that

for PIMC using τ−1 = 106K, nA = 1, and nE = 2, the energy E is too high by

0.25±0.05 eV and 2K+V is too large by 0.7±0.1 eV per atom. The latter correction

is particularly important because in PIMC simulations of Coulomb systems, we use

the virial theorem, Eq. 3.55, to estimate the pressure. The correction to the pressure

is equivalent to subtracting the pressure of an ideal H2 gas at T = 5400± 800K.

The accuracy of PIMC simulations of an isolated molecule is affected by the order

in action and energy expansion as well as by the time step because it is a four-

particle problem. Tab. 4.3 shows results calculated with nA = nE = 3 orders. First,

we studied the different temperatures and found no dependence on T , which means

that contributions from electronic excited states are negligible. Furthermore, the

comparison of different time steps shows a significant dependence. Using a time step

τ−1 = 2 · 106K allows one to calculate the energy with an accuracy of approximately

0.05 eV and 2K + V with an error of about 0.1 eV per atom. Using a smaller time

step would bring the results in Fig. 4.2 closer to the exact results.
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Most many-particle PIMC simulations discussed in the following sections have

been performed using nA = 1 and nE = 2 in the action and energy expansion of

the pair density matrices. The correction resulting from higher order terms will be

estimated based on the following argument. Higher order off-diagonal terms are large

for small separations of the two particles. Therefore, we expected the dominant cor-

rections to come from pairs of protons and electron when both particles are close

together. Therefore, we suggest to use the integral of the proton-electron pair corre-

lation function up to a cut-off radius,

Ipe = 4πn

∫ rc

0

dr r2 gpe(r) , (4.2)

in order to estimate the corrections to pressure and energy,

∆E = c1 Ipe , (4.3)

∆p = c2 Ipe
n

3
. (4.4)

We estimated rc = 1.4 from studying the magnitude of the higher order terms and

determined the coefficients c1 and c2 from the corrections for the isolated molecule

discussed above: c1 = −0.24 ± 0.05 eV and c2 = −0.7 ± 0.1 eV. In the following

discussion of the thermodynamic properties, it will be explicitly stated where this

correction has been applied. It turns out that the corrections to the pressure are

particularly important at low densities and temperatures, where the pressure becomes

of the same order of magnitude as the correction. It should also be noted that the

corrections hardly change the hugoniot curve discussed in section 4.6. The effect is

significantly smaller than the differences in energy and pressure, which are relevant

in this context.

4.2 Phase Diagram

We used PIMC simulations with 32 protons and 32 electrons, a time step τ−1 = 106K,

nA = 1, and nE = 2 to generate the phase diagram shown in Fig. 4.3. In the low

density and low temperature regime, we find a molecular fluid. In the proton-proton

pair correlation functions (see section 4.4, Fig. 4.15), one finds a clear peak at the

bond length of 1.4. The integral under the peak is proportional to the number of

molecules. This criterion works well for low densities where the peak is well separated

from the remaining contributions. Alternatively, one can estimate the number of

molecules as well as other compound particles by a cluster analysis, in which the

individual path configurations from PIMC simulations are analyzed. As described
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in (Militzer et al., 1998), we consider two protons as belonging to one cluster if

they are less than 1Å apart. An electron belongs to one particular cluster if it is

less than 0.75Å away from any proton in the cluster. The two cut-off radii were

chosen from the molecular and atomic ground state distribution. This analysis give

reasonable estimates for the molecular and atomic fractions at low temperatures. At

high temperature, it typically overestimated the number of bound states because in

a collision, two particles are close but this is not a bound state. We corrected for

this artifact by applying an additional criterion. A particle can only be considered as

bound if the difference in action (or energy) to remove it from the cluster is positive.

This method leads to the expected corrections at high temperature. The regime

boundaries in Fig. 4.3 are hardly affected. Summarizing one can say that PIMC

simulations provide good estimates for the number of atoms and molecules at low

density but a rigorous quantum-mechanical definition of what a bound state is and

how to identify it remains to be given. Several ideas are discussed in the work by

Girardeau (1990).

Starting in the molecular regime, one finds that increasing temperature at constant

density leads to the gradual process of thermal dissociation of molecules, which results

into a regime with a majority of atoms. The atoms are then gradually ionized at even

higher temperatures leading to a plasma of free protons and electrons. Lowering

the density at constant temperature leads to a decrease in the number of molecules,

or atoms respectively. We call these processes entropy dissociation of molecules and

entropy ionization of atoms because both processes are driven by the increased entropy

of the unbound states due to the larger volume.

If the density is increased at constant temperature, pressure dissociation dimin-

ishes the molecular fraction. This transition was described by Magro et al. (1996).

In simulations with the time step τ−1 = 106K, it was found that the number of

molecules drops significantly within a small density interval. Secondly, a region with
∂P
∂T

∣

∣

V
¦ < 0 was found as shown in Fig. 4.5. Both results are consistent with a first

order plasma phase transition (PPT). In this case, one expects to find a coexistence

region indicated by thick red line in Fig. 4.3, which ends in a critical point.

Since the work by Magro et al. (1996), we were able to obtain simulation results

with better convergence, smaller time steps, for larger systems and different nodal

surfaces. It should be emphasized that the type of nodal surface has a significant effect

on the thermodynamic properties in the region of the PPT, which will be discussed in

detail in section 4.3. First, we verified that simulations using free particle nodes and

smaller time steps (τ−1B = τ−1F = 2 · 106K and τ−1B = 2 · 106K, τ−1F = 8 · 106K) also
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predict ∂P
∂T

∣

∣

V
¦ < 0 as shown in Fig. 4.5. Using a smaller time step makes the pressure

drop less pronounced but it can still be clearly identified.

As a next step, we looked at the number of permuting electrons, which is one of the

key properties to understand this transition. We determined the fraction of electrons

involved in a permutation as an indication of electronic delocalization. Permuting

electrons are required to form a Fermi surface (see chapter 5), which means that a

high number of permutations indicates a high degree of degeneracy of the electrons.

If, in average, over 80% of the electrons are involved in a permutation we label this

state metallic. Permuting electrons form long chains of paths and therefore occupy

delocalized states. This delocalization destabilizes the hydrogen molecules. Before

all bonds are broken, one finds a molecular fluid with some permuting electrons as

visualized in Fig. 4.8. It still shows a significant molecular signature but differs from

the molecular fluid at lower density in Fig. 4.7 by the increased fraction of permuting

electrons. If the density is increased further, the majority of the electron become

delocalized, all bonds are broken, which leads to a metallic fluid of unbound proton

and the degenerate electron gas as shown in Fig. 4.9.

Fig. 4.10 shows histograms of the number of permuting electrons. At low density,

the permutation probability is small and the peak in the histogram is on the left.

The peak position shifts to the right with increasing density indicating the higher

fraction of permuting electrons. Eventually, one finds a sharp peak near 1, which

corresponds to degenerate electronic states where almost all electrons permute. The

histogram also provides information on how this transition occurs in simulations with

free particle nodes. Near the critical density, we found that the simulation exhibits

a switching behavior between a less degenerate (and presumably more molecular)

and highly degenerate (with unbound protons) state. The bimodal distribution can

be seen best in the simulation at rs = 1.86 and T = 6944K in Fig. 4.10 and to a

lesser extent for rs = 1.93 and T = 7812K as well as for T = 6944K. This switching

behavior indicates that the transition occurs as a collective effect, which is required

for a first order phase transition.

The boundaries of the metallic regime in Fig. 4.3 are determined by two effects.

With increasing temperature, the degree of degeneracy of the electrons is reduced and

one finds a gradual transition to a less degenerate plasma state. If the temperature

is lowered, the attraction to the protons becomes more relevant, which localizes the

electrons and decreases the degree of degeneracy as also can be seen in Fig. 4.10.

79



Figure 4.7: Hydrogen in molecular state as it appears in a PIMC simulation at T =
5000K and rS = 4.0. The salmon-colored spheres denote the protons. The bonds (white
lines) were put in a guide to the eye. The electron paths are shown in red and blue
depending on their spin state.
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Figure 4.8: Deuterium in molecular state with significantly degenerate electrons as it
appears in a PIMC simulation at T = 5000K and rS = 1.86 similar to Fig. 4.7. Due to
the higher density, the electron paths permute with a higher probability (shown as yellow
lines) but are localized enough to form a bond between the two protons in the molecule.
The electron density average over many electron configurations is indicated in gray color
on the blue rectangles.
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Figure 4.9: Deuterium in metallic state with unbound protons and a gas of degenerate
electrons as it appears in a PIMC simulation at T = 6250K and rs = 1.6 similar to
Fig. 4.8. The electron paths are delocalized and permute frequently.
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4.3 Comparison of Variational and Free Particle Nodes

In this section, we are going to compare thermodynamic properties derived from

PIMC simulations of deuterium with free particle nodes with those using VDM nodes.

The effect of the nodal surfaces is largest in the region of a high degree of electronic

degeneracy, found at high density and low temperature. It should be noted for low

densities e.g. rs ≥ 3, electrons become bound and localized before a significant degree

of degeneracy is reached. This can be seen in the phase diagram in Fig. 4.3 and in

the histogram of the permutation probabilities in Fig. 4.10. For this reason, we focus

in the discussion on the two densities corresponding to rs = 2 and 1.86 where the

electronic degeneracy becomes very important for T ≤ 31 250K.
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VDM and free particle nodes vs. temperature using NP = 32, τ−1 = 2 · 106K, nA = 1,
and nE = 2.

In Fig. 4.11, a comparison of the internal energy from simulations with FP and

VDM nodes is shown. Simulations with VDM nodes lead to lower internal energies

than those with FP nodes. The differences become smaller with increasing tempera-

ture since the both density matrices are exact in this limit. Since the free energy F

is the integral of the internal energy over temperature, one can conclude that VDM

nodes yield to a smaller F and hence, are the more appropriate nodal surface.

In the following, we will discuss the revised phase diagram shown in Fig. 4.6. First

of all, the nodal surfaces are not important for low densities e.g. rs
>
∼ 3. Therefore, we

can copy the low density PIMC results using free particle nodes that determine the lo-

cation of the molecular and atomic regime. Furthermore, we compare the histograms

of the permutation probability shown in Fig. 4.12 with those from free particle nodes

in Fig. 4.10. Generally, one finds that the permutation probability is reduced for

VDM nodes and that the area of metallic regime in the temperature-density plane

has shrunk considerably. This can be understood as follows. FP nodes are generated

from maximally delocalized orbitals. Therefore, they could favor delocalized states

and allow more permutations. VDM nodes include bound states and lead to more

localized orbitals, which consequently reduces the fraction of permuting electrons. A

comparison of the distribution of the cycle length can be found in Fig. 4.13. However,

it should be noted that there is the possibility that the VDM leads to too localized or-

bitals in the limit of high density, as indicated by the too small width of the Gaussians

orbitals shown in Fig. 3.11.

In the next step, we calculated the pressure as a function of temperature for

rs = 1.86 using different time steps as in Fig. 4.6. Within the statistical error bars,
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results from PIMC simulations with VDM nodes do not show a region where the

pressure drops down with increasing T, dP
dT

∣

∣

V
¦ < 0. This shows that the results in

regime near the PPT are strongly affected by the type of nodes being used. This

also raises some concern on how reliable the PIMC simulations are in this regime.

However, one can proceed as is done in QMC at T = 0, where one takes those set of

nodes which leads to the lowest internal energy. At finite temperature, we used the

free energy argument above and concluded that the VDM nodes are more reliable.

They do not seem to predict a first order PPT in the particular region of density and

temperature shown in Fig. 4.4. However, there is the possibility that the PPT has

been shifted to temperatures below 5000K and that the metallic phase exhibits again

a low temperature boundary, which is characterized by a PPT similar to the metallic

regime predicted using free particle nodes as shown in Fig. 4.3. On the other hand,

one can say that the PPT might have disappeared because we employed VDM nodes

that includes a reasonable description of bound states as well as free particle states

and therefore, we got rid of the imbalance that the free particle favored the metallic

regime.

85



0 1 2 3 4 5
r

0

1

2
0

1

2
0

1

2
0

1

2

g pp
(r

)

0

1

2
0

1

2
0

1

2

0 5 10 15
i

0
0.1
0.2
0.3

50
00

 K

0
0.1
0.2
0.3

78
12

 K

0
0.1
0.2
0.3

10
00

0 
K

0

0.5

15
62

5 
K

P
cy

cl
e(

i)

0

0.5

31
25

0 
K

0

0.5

62
50

0 
K

0

0.5

1

12
50

00
 K

Figure 4.13: The proton-proton pair correlation functions from PIMC simulations with
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and a lower permutation probability while FP nodes show a more abrupt change in the
molecular fraction and a higher number of permutations, which suggests more delocalized
electrons.

The PPT predicted by free particle nodes also predicted a change in the num-

ber of molecules. In Fig. 4.13, the proton-proton pair correlation functions as well

as the permutation cycle distributions are shown for series of simulations for differ-

ent temperatures at rs = 1.86. The two functions were chosen in order to charac-

terize the effect of the two different nodal surfaces. At high temperatures such as

T = 125 000K, simulations with FP and VDM nodes give identical results because

the nodes are equivalent in this limit. At this temperature, hydrogen is composed of

strongly interacting gas of free protons and electrons with a moderate degree of elec-

86



tronic degeneracy (TF = 168 090K). With decreasing temperature, the degeneracy

increases, which can be inferred from cycle distributions. At 31 250K, small devia-

tions between FP and VDM nodes emerge. At half the temperature, the differences

have increased further, which consequently lead to a different state with different

proton-proton pair correlations. Simulations with VDM nodes predict a significant

molecular fraction and a smaller degeneracy, while FP results show no peak in the

proton-proton pair correlation function in combination with a larger degeneracy. In

the FP case, most of the electrons are delocalized and occupy states similar to a free

Fermi gas. VDM nodes predict that the electrons are in more localized states, which

leads to the molecular binding.
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Figure 4.14: Comparison of the cycle length distribution (probability of an electron
being involved in a permutation cycle of the length i) in a PIMC simulation of hydrogen
with 32 protons and 16 electrons of each spin state at T = 10 000K and rs = 1.86
(TF = 168, 090K).

At 7812K one finds big differences in the proton-proton pair correlation functions

since FP nodes predict a metallic state and VDM nodes a more molecular structure.

At 5000K both are rather similar because according the FP nodes, one has crossed

the phase boundary, the pressure has risen and molecules are formed. VDM nodes,

on the other hand, predict a smooth transition.

From Fig. 4.14, it can be deduced that the discussed differences in the number of

permutations are indeed a consequence of the type of nodes rather than a result of
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using a too large time step. Going from τ−1 = 2 ·106K to 8 ·106K reduces the number

of permutations slightly because the nodal surfaces are enforced more accurately,

which prevents some permutations from occurring. However, the differences to FP

results are significantly larger.

4.4 Pair Correlation Functions

In this section, we compare the pair correlation functions for different densities and

temperatures from PIMC simulations using free particle and VDM nodes. The pair

correlation function is defined as (Allen and Tildesley, 1987),

g(r) =
V
¦

N2
〈
∑

i

∑

j 6=i

δ(r− rij) 〉 . (4.5)

It goes to 1 in the limit of large r in an infinite system and to (N −1)/N in a system

of N particles. The proton-proton pair correlation functions from PIMC simulations

with free particle nodes are shown in Figs. 4.15 and 4.16. For T <
∼ 20 000K a peak at

the bond length of 1.4 emerge, which clearly demonstrates the formation of molecules.

In the low density region, we find it useful to multiply the pair correlation function

by an extra density factor N/V
¦

so that the area under the peak is proportional to the

molecular fraction. For rs
>
∼ 2, the peak height gets smaller with decreasing density as

a result of entropy dissociation. Thermal dissociation reduces the number of molecules

with increasing temperature. For rs
<
∼ 2, pressure dissociation diminishes the peak

with increasing density. For PIMC with free particle nodes, this process occurs within

a small density interval, in which the system undergoes a transition from a molecular

to a metallic regime (see Fig. 4.3).

Fig. 4.17 and 4.18 show the proton-proton pair correlation functions from PIMC

simulations with VDM nodes using the standard normalization from Eq. 4.5. We also

included simulations at higher densities corresponding to rs = 1. The molecular peak

disappears gradually with increasing density, indicating that pressure dissociation

leads to a smooth transition to a metallic regime.

The proton-electron radial distribution function r2[gpe(r)− 1] from different sim-

ulations using free particle nodes is shown in Fig. 4.19. For non-interacting particles,

this function would be identical to zero. The first peak shows an increased probability

of finding a electron near a proton due to the attractive forces. At low temperature,

the size of peak can also be interpreted as the occupation of bound electronic states.

Also the unbound, scattering states lead to a smaller but non-zero contribution to this
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different rs values and the rows to different temperatures T .
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Figure 4.21: Proton-electron pair correlation function as in Fig. 4.20 but for higher
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Figure 4.23: Electron-electron pair correlation function as in Fig. 4.22 but for higher
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peak. However, one can still deduce that the degree of ionization, inversely related

to the peak size, increases with temperature.

Alternatively, one can study the proton-electron pair correlation function as shown

in Fig. 4.20 and 4.21 from simulations using VDM nodes, where the same overall

behavior is represented in a different form. Fig. 4.22 and 4.23 show the electron-

electron pair-correlation functions. The peak for pairs with anti-parallel electron

spins indicates the formation of molecules, in which two electrons get very close, in

cases where they realize the molecular binding. For same spin electrons, one always

finds a strong repulsion due to the Pauli exclusion principle.

4.5 Equation of State

The equation of state (EOS) is central interest in theoretical plasma physics since it is

the basic thermodynamic quantity. It is also the key property to test the accuracy of

different approaches to hot, dense hydrogen including analytical theories and numer-

ical models. If the predicted EOS seems reasonable, one can have more confidence in

all derived properties. The complete EOS data from our PIMC simulations can be

found in tables in App. D.

First, we picked the density corresponding to rs = 2 and compared pressure

and energy as a function of temperature. We separated the analysis in the high

temperature behavior kBT
>
∼ 1Ry where thermal excitations dominate, and the low

temperature regime kBT
<
∼ 1Ry where Coulomb effects and bound states are most

relevant.

The pressure and energy in the high temperature regime are shown in Figs. 4.24

and 4.25. In the high temperature limit, kinetic effects are dominant and the hydrogen

plasma behaves like a gas of non-interacting protons and electrons. The leading

corrections are given by Debye screening effects (see App. C) that scale with the

coupling parameter Γ3/2. For small values of Γ, the (fully ionized) Debye model

is a reliable approximation. One finds deviations of less than 20% in pressure and

energy for Γ < 0.5 at rs = 2. For higher values of Γ, quantum effects such as the

formation of bound state at low density and degeneracy effects at high density limit

the validity. Various extensions to the Debye model have been made, see (Ebeling

et al., 1976). However, at sufficiently high Γ, the Debye model overestimates the

screening drastically and leads to unphysically low, even negative pressures.

Figs. 4.24 and 4.25 include a comparison with EOS model by Saumon and Chabrier

(1992), the Padé approximations in the chemical picture (PACH) by Ebeling and
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and Richert (1985a), the EOS by Saumon and Chabrier (1992) and from PIMC simulations
with VDM nodes, τ−1 = 2 · 106K, nA = 1, and nE = 2.
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Figure 4.25: Internal energy per atom vs. temperature for rs = 2 from the methods in
Fig. 4.24 and the activity expansion (Actex) by Rogers (1990).
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Figure 4.26: Pressure vs. temperature for rs = 2 from the EOS by Saumon and
Chabrier (1992), DFT-MD by Lenosky et al. (2000), linear mixing model by Ross (1998),
wave packet MD by Knaup et al. (2000), from the fluid variational theory by Juranek and
Redmer (2000) and from PIMC simulations with VDM nodes, τ−1 = 2 · 106K, nA = 1,
and nE = 2.
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Figure 4.27: Internal energy per atom vs. temperature for rs = 2 from the methods in
Fig. 4.26
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Figure 4.28: Internal energy per atom vs. hydrogen density from PIMC simulation (◦)
with τ−1 = 106K, nA = 1, and nE = 2 using free particle nodes are compared with the
equation of state by Saumon and Chabrier (1992) (dashed lines).
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Figure 4.29: Pressure vs. hydrogen density from PIMC simulations (◦) with τ−1 =
106K, nA = 1, and nE = 2 using free particle nodes are compared with the equation of
state by Saumon and Chabrier (1992) (dash lines). ♦ show PIMC results with pressure
correction ∆p = −n

3
0.7 eV discussed section 4.1. The thin dashed line denotes the

pressure of an ideal H2 gas at T = 5000K.
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Richert (1985a), and the activity expansion (Actex) by Rogers (1990). The observed

deviations are a result of how interaction and degeneracy effects are treated in those

models.

In Figs. 4.26 and 4.27, we compare pressure and energy in the low temperature

regime. The EOS properties are determined by a strong coupling combined with a

high degeneracy (TF = 145 000K). The comparison includes EOS by Saumon and

Chabrier (1992), the DFT-MD by Lenosky et al. (2000), the fluid variational theory

by Juranek and Redmer (2000), the wave-packet MD by Knaup et al. (2000), the

linear mixing model by Ross (1998), and PIMC simulations using free particle nodes

and τ−1 = 2 · 106K. For this density, we found the best agreement of our results with

the work by DFT-MD by Lenosky et al. (2000).

Finally, we present a comparison of internal energy and pressure as a function

of density for different temperatures. Fig. 4.28 shows a reasonably good agreement

in the energy between the EOS by Saumon and Chabrier (1992) and our simulation

results over a broad range of densities. PIMC energies for low temperatures and

densities are consistently lower by the order 1 or 2 eV per atom. For low density

and high temperature, relatively large deviations were observed, which is surprising

because in this regime, one expects both methods to work very well.

Studying the pressure as function of density in Fig. 4.29, one finds remarkably

good agreement for T = 125 000 and 31 250K. For 5000 K, the PIMC pressure is far

too high because hydrogen under these conditions is a weakly interacting molecular

gas with possibly a very small degree of dissociation caused by entropy effects. The

PIMC pressure is about twice the expected value, which is a result of the inaccuracies

in the pair density matrices discussed in section 4.1. After those corrections have been

applied one finds better but not perfect agreement. New calculations with improved

density matrices remain to be done.

4.6 Shock Hugoniot

Recent Nova laser shock wave experiments on pre-compressed liquid deuterium (Da Sil-

va et al., 1997; Collins et al., 1998) provided the first direct measurements of the high

temperature equation of state of deuterium for pressures up to 330 GPa. It was found

that deuterium has a significantly higher compressibility than predicted by the semi-

empirical equation of state based on plasma many-body theory and lower pressure

shock data (see SESAME model by Kerley (1983)). In an earlier series of experiments

using the two-stage gas gun (Holmes et al., 1995; Nellis et al., 1983), pressures of up
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to 23 GPa were reached. The laser experiments are of particular importance to this

work because they represent the only experimental data our PIMC simulation results

can be directly compared to. The temperatures reached in gas gun experiments did

not exceed 4400 K. Therefore a direct comparison with PIMC simulations is currently

not feasible.

x

ρ
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D
riv

e
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Material in
initial state

Shocked material in
final state (ρ,p,T)

(ρ0,p0,T0)

Shock front

Pusher

Figure 4.30: Density profile in an idealized shock experiment, in which a driving force
moves the pusher at constant velocity up. The resulting shock wave travels at velocity
us.

Shock wave experiments are an established technique (Zeldovich and Raizer, 1966)

to determine the equation of state at high pressures and temperature, which has been

applied to a wide range of materials including aluminum, iron, and water. In the

experiment, a driving force is utilized to propel a pusher at constant velocity up into

a material at predetermined initial conditions (%0, p0, T0) as shown in Fig. 4.30. The

impact generates a planar shock wave, which travels at the constant velocity us with

us > up. The shock compression drives the material to a point on the principle

Hugoniot, which is the locus of all final states characterized by (%, p, T ) that can be

achieved by a single shock wave passing through. Under the assumption of an ideal

shock (see below), the conservation laws of mass, momentum, and energy require only

the measurement of the velocities of the pusher up and the shock front us in order to

obtain an absolute equation of state data point. Pressure and density of the shock

material are related to us and up by,

p− p0 = %0usup (4.6)
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%

%0
=

us

us − up

. (4.7)

The internal energy in the final state follows from the conservation laws,

H = E − E0 +
1

2
(V
¦ − V¦0)(p+ p0) = 0 , (4.8)

which is called the Hugoniot relation. It can also be used to determine the Hugoniot

curve analytically from a given equation of state.

By an ideal shock, one means that a planar pusher is driven at constant velocity

into the sample. The resulting shock wave is characterized by a planar shock front

that travels at constant velocity during the measurement. Furthermore, one assumes

that unshocked material remains at known initial conditions and not preheated as for

example by x-rays created at the laser target interaction. Under these assumptions,

one can determine the equation of state from the measured velocities us and up using

Eqs. 4.6-4.8.

In the recent laser shock experiments, a shock wave is propagating through a sam-

ple of pre-compressed liquid deuterium characterized by an initial state, (E0, V
¦

0, p0)
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Figure 4.31: Comparison Hugoniot function calculated with PIMC simulations of dif-
ferent accuracy using nA = 1, and nE = 2: FP nodes with NP=32 (4 for τ−1 = 106K
reported by Militzer et al. (1998), B for τ−1 = 2 · 106K, 5 for τ−1F = 8 · 106K and
τ−1B = 2·106K) andNP=64 (¤ for τ−1 = 2·106K) as well as with VDM nodes andNP=32
(◦ for τ−1 = 106K and • for τ−1 = 2 · 106K). Beginning at high pressures, the points on
each Hugoniot correspond to the following temperatures 125 000, 62 500, 31 250, 15 625,
and 10 000K. The dashed line corresponds to a calculation using the VDM alone.
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with T = 19.6K and %0 = 0.171 g/cm3. In our calculations, we set E0 to its ex-

act value of −15.886eV per atom (Kolos and Wolniewicz, 1964) and p0 = 0 because

p À p0. Using the PIMC simulation results for p and E, we calculate H(T, %) from

Eq. 4.8 and then interpolate H linearly at constant T between the two densities cor-

responding to rs = 1.86 and 2 to obtain a point on the Hugoniot in the (p, %) plane.

Results at rs = 1.93 confirm that the function is linear within the statistical errors.

The PIMC data for p, E, and the Hugoniot are given in Tab. 4.4.

Table 4.4: Pressure p and internal energy per atom E from PIMC simulations with 32
pairs of electrons and deuterons. For T ≥ 250 000K, we list results from simulations
with FP nodes and τ−1F = 8 · 106K and τ−1B = 2 · 106K, otherwise with VDM nodes and
τ−1 = 2 · 106K.

T (K) p(Mbar) E(eV) p(Mbar) E(eV) %Hug(gcm−3) pHug(Mbar)

rs = 2 rs = 2 rs = 1.86 rs = 1.86

1 000 000 53.79 (5) 245.7 (3) 66.85 (8) 245.3 (4) 0.7019 (1) 56.08 (5)

500 000 25.98 (4) 113.2 (2) 32.13 (5) 111.9 (2) 0.7130 (1) 27.48 (4)

250 000 12.12 (3) 45.7 (2) 14.91 (3) 44.3 (2) 0.7242 (1) 12.99 (2)

125 000 5.29 (4) 11.5 (2) 6.66 (2) 11.0 (1) 0.7300 (3) 5.76 (2)

62 500 2.28 (4) -3.8 (2) 2.99 (4) -3.8 (2) 0.733 (1) 2.54 (3)

31 250 1.11 (6) -9.9 (3) 1.58 (7) -9.7 (3) 0.733 (3) 1.28 (5)

15 625 0.54 (5) -12.9 (3) 1.01 (5) -12.0 (2) 0.721 (4) 0.68 (4)

10 000 0.47 (5) -13.6 (3) 0.80 (8) -13.2 (4) 0.690 (7) 0.51 (5)

In Fig. 4.31, we compare the effects of different approximations made in the PIMC

simulations such as time step τ , number of pairs NP and the type of nodal restric-

tion. For pressures above 3 Mbar, all these approximations have a very small effect.

The reason is that PIMC simulation become increasingly accurate as temperature in-

creases. The first noticeable difference occurs at p ≈ 2.7Mbar, which corresponds to

T = 62 500K. At lower pressures, the differences become more and more pronounced.

We have performed simulations with free particle nodes and NP = 32 for three dif-

ferent values of τ . Using a smaller time step makes the simulations computationally

more demanding and it shifts the Hugoniot curves to lower densities. These differ-

ences come mainly from enforcing the nodal surfaces more accurately, which seems to

be more relevant than the simultaneous improvements in the accuracy of the action

S, that is the time step is more constrained by the Fermi statistics than it is by the

potential energy. We improved the efficiency of the algorithm by using a smaller time

step τF for evaluating the Fermi action than the time step τB used for the potential

action. Unless specified otherwise, we used τF = τB = τ . At even lower pressures not
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shown in Fig. 4.31, all of the Hugoniot curves with FP nodes turn around and go to

low densities as expected.

As a next step, we replaced the FP nodes by VDM nodes. Those results show

that the form of the nodes has a significant effect for p below 2 Mbar. Using a

smaller τ also shifts the curve to slightly lower densities. In the region where atoms

and molecules are forming, it is plausible that VDM nodes are more accurate than

free nodes because they can describe those states (see chapter 3). We also show a

Hugoniot derived on the basis of the VDM alone (dashed line). These results are quite

reasonable considering the approximations (Hartree-Fock) made in that calculation.

Therefore, we consider the PIMC simulation with the smallest time step using VDM

nodes (•) to be our most reliable Hugoniot. Going to bigger system sizes NP = 64

and using FP nodes also shows a shift towards lower densities.

Fig. 4.32 compares the Hugoniot from laser shock wave experiments (Da Silva

et al., 1997; Collins et al., 1998) with PIMC simulations (VDM nodes, τ−1 = 2 ·106K)

and several theoretical approaches: SESAME model by Kerley (1983) (thin solid line),

linear mixing model (dashed line) by Ross (1998), DFT-MD by Lenosky et al. (2000)

(dash-dotted line), Padé approximation in the chemical picture (PACH) by Ebeling

and Richert (1985a) (dotted line), and the work by Saumon and Chabrier (1992) (thin

dash-dotted line).

The differences of the various PIMC curves in Fig. 4.31 as well as in Fig. 4.32

are small compared to the deviation from the experimental results by Da Silva et al.

(1997) and Collins et al. (1998). One finds that the corrections from Eq. 4.3 have

only a small effect on the Hugoniot. In the experiments, an increased compressibility

with a maximum value of 6±1 was found while PIMC predicts 4.3±0.1, only slightly

higher than that given by the SESAME model. Only for p > 2.5Mbar, does our

Hugoniot lie within experimental error bars. In this regime, the deviations in the

PIMC and PACH Hugoniot are relatively small, less than 0.05 gcm−3 in density. In

the high pressure limit, the Hugoniot goes to the FP limit of 4-fold compression.

This trend is also present in the experimental findings. For pressures below 1 Mbar,

the PIMC Hugoniot goes back to lower densities and shows the expected tendency

towards the experimental values from earlier gas gun work Nellis et al. (1983); Holmes

et al. (1995) and lowest data points from Da Silva et al. (1997); Collins et al. (1998).

This trend can be studied best in the logarithmic graph shown in Fig 4.33, where

we also included our lowest available pressure point on the Hugoniot, which was

obtained from simulations with 32 pairs of electrons and deuterons and the time step

τ−1F = 8 · 106K and τ−1B = 2 · 106K. Within the statistical error bars, the PIMC
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Figure 4.32: Comparison of experimental and several theoretical Hugoniot functions.
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of electrons and deuterons. They were obtained with free particle nodes, VDM nodes,
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0.4 0.6 0.8 1.0
ρ (gcm

−3
)

10
−1

10
0

10
1

p 
(M

ba
r)

Exp. Da Silva (1997)
Exp. Collins (1998)
Gas Gun
SESAME
Linear Mixing
Saumon & Chabrier
DFT−MD Lenosky
DFT−MD Galli
PIMC VDM

Figure 4.33: Logarithmic Hugoniot graph as in Fig. 4.32. including the gas gun exper-
iments by Holmes et al. (1995) and Nellis et al. (1983).
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Hugoniot curve tends towards the results from gas gun experiments. For these low

pressures, one also finds that the differences between PIMC and DFT-MD are also

relatively small compared to the deviation from the laser shock data.

Using the PIMC equation of state, one can also determine the shock and pusher

velocity on the Hugoniot. From Eqs. 4.6 and 4.7, one finds,

mDu
2
s =

%

%− %0
p

%0
, (4.9)

mDu
2
p = p

(

1

%0
− 1

%

)

. (4.10)

The results are shown in Fig. 4.34 and compared to the experimental shock and pusher

velocities published in (Collins et al., 1998). First of all, one finds the differences

between theory and experiment are not as pronounced as in the p-% graph in Fig. 4.32.

This fact simply follows from Eq. 4.7 where one divides by the difference of us and

up. It means that one needs a high accuracy in the measurements of both velocities,

since error bars will increase substantially when the density is determined. However,
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Figure 4.34: Shock velocity vs. pusher velocity as directly measured in the shock wave
experiment and the comparison with estimates from PIMC simulation with VDM nodes.
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it is not obvious why the PIMC and DFT-MD results are in within the corners of the

experimental us-up error bars. A simple error propagation of these us and up error

bars leads to much bigger error bars in the density than those reported by Da Silva

et al. (1997) and Collins et al. (1998) and shown in Fig. 4.31. Possibly the experiments

allow a more accurate determination of the difference us − up than of the individual

velocities.

Summarizing, one can say that PIMC simulations predict a slightly increased

compressibility of 4.3 ± 0.1 compared to the SESAME model but they cannot re-

produce the experimental findings of values of about 6 ± 1. Further theoretical and

experimental work will be needed to resolve this discrepancy.
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Chapter 5

Off-Diagonal Density Matrix Elements

In this chapter, we are going to describe the sampling of off-diagonal matrix elements

using the path-integral formalism. Instead of calculating diagonal density matrix

elements ρ(R,R′ = R; β), for which the paths return to their starting point, we now

include the possibility of open paths. Opening one path allows one the sampling of

the single-particle reduced density matrix defined by,

ρ[1](r1, r
′
1) =

V
¦

Z

∫

dr2 · · · drN ρ(r1, r2, . . . , rN , r
′
1, r2, . . . , rN ) , (5.1)

which is related to the momentum distribution. A PIMC simulation with two open

paths samples the two-particle reduced density matrix,

ρ[2](r1, r2, r
′
1, r

′
2) =

V
¦ 2

Z

∫

dr3 · · · drN ρ(r1, r2, r3, . . . , rN , r
′
1, r

′
2, r3, . . . , rN ) , (5.2)

which will be used to study natural orbitals. In the following two sections, we discuss

the modifications to the sampling procedure in order to deal with the open ends.

5.1 Sampling with Open Paths

In this section, the multilevel sampling procedure from sections 2.5.3 and 2.6.9 will be

extended to the sampling with open paths for Bosons and distinguishable particles.

Fermions will be discussed in section 5.2. A picture of an open path is shown in

Fig. 5.1. We chose to put the open ends at time slice β
2
because we will apply the

double reference method from section 2.6.4 to fermionic systems. For distinguishable

particles, the open path is a single polymer that interacts with the other particles.

The contributions to the action are calculated in the same way as is done for closed

paths except for the diagonal pair action in the time slice containing the open ends.
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Figure 5.1: Illustration of a permutation of closed and open paths showing imaginary
time T vs. one spatial dimension x. In the left graph, a permutation of three closed paths,
each with a different lines style, is displayed. tp denotes the slice where the relabelling of
the particle indices takes place. The fermion determinant is always positive. On the right,
a two particle permutation involving an open paths with the open end at β

2
is shown. Slice

for which the fermion determinant has to be negative, are indicated.

There, each open end contributes with the weight 1
2
, which can be understood from

Eq. 2.25.

Without interactions, the distribution of the open ends is by definition given

by the free particle density matrix in Eq. 2.11. This equation will be used in the

free particle sampling method for the generation of new path sections that contain

the open ends. For closed paths, one samples the new positions from a Gaussian

distribution centered at the midpoint between the slice above and below (Eq. 2.63)

because of the two spring terms in the free particle action. The open ends are only

connected in one direction in imaginary time. Therefore, the free particle sampling

distribution for open ends being connected to ri+1 or ri−1 reads,

T (ri) = (4πλτ)−D/2 exp

{

−(ri − ri±1)2
4λτ

}

. (5.3)

For Bosons and Fermions, one also needs to sample the permutation space, which can

be done as for closed paths described in section 2.5.4. The open paths can then form

long chains consisting of several particles. Those correspond to off-diagonal long-

range order. In 4He, they lead to the condensate fraction of atoms with precisely zero

momentum as shown by Ceperley (1995).
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5.2 Nodal Restriction for Open Paths

The restricted PIMC method leads to some additional questions on how to constrain

the open paths, which will be addressed in this section. First of all, one has to decide

where to put the open ends with respect to the reference point R∗. Since we are

going to use the double reference point method from section 2.6.4, the open ends

consequently have to be located in slice tO = β
2
, which is illustrated in Fig. 5.1. This

method has the advantage that the trial density matrix is only needed up β
2
.

The most significant difference between fermionic PIMC simulations with closed

and open paths lies in the fact that for open paths, odd permutations do not necessarily

cross the nodes. They will be included in the sampling and lead to negative signs. As

pointed out in section 2.6.2, the nodal constraint only prevents negative contributions

to diagonal density matrix elements. For open paths, the sign (−1)P comes into a

PIMC simulation as an additional factor when the averages are computed.

The nodes are taken from the trial density matrix in Eq. 2.82. They are enforced

by the condition ρT (R(t),R∗; t) > 0 where the reference point is R∗ ≡ R(0). This

is used for closed as well as for open paths. For closed paths, one can simply check

if the signs of all the determinants are positive. For open paths, the situation is

more complicated because one needs to be able to move the point of permutation tP

described in section 2.5.4 to any time slice. If tP is at the slice with the open ends,

tO = tP , all determinants must be positive as in the case of closed paths. If tP is

moved to a different time slice some rows in the determinants ρij = ρ1(ri, r
∗
j ; β) on

the way are switched because a permutation P is applied to the coordinates ri. For

the slices between tP and tO, the determinants must have the sign (−1)P in order to

fulfill the nodal condition. This is illustrated in Fig. 5.1. This reasoning still holds if

tP is moved across the reference point slice because then the columns in ρij change as

well. These rules have consequences for the ways odd permutations can be introduced

into a system. There are two required conditions for such a move in order to have at

least the chance not to violate the nodes:

• It is impossible to permute an even number of closed path while keeping all

other particle coordinates fixed.

• It is impossible to permute an open and a closed path in a move that does not

change the slice with the open ends tO.

This puts a restriction on the trial permutations entering the permutation table from

section 2.5.4 because certain permutations would inevitably be rejected when the
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nodes are checked.

5.3 Momentum Distribution

In the path integral formalism, the momentum distribution can be derived by project-

ing out a many particle state with momentum K. The projection operator is given

by,

P̂K = |ψK〉 〈ψK| (5.4)

=

∫

dRdR′ |R〉 e−iK(R−R′) 〈R′| . (5.5)

Applying it to the thermal density matrix using Eq. 2.7 leads to

〈

P̂K

〉

=
1

Z

∫

dRdR′ ρ(R,R′; β) e−iK(R′−R) . (5.6)

To find the single particle momentum distribution, one averages over the momen-

tum of all particles except the first, which is equivalent to performing the integrals

dk2 . . .dkN . Including an extra normalization factor of (2π)−ND, this leads to the

single particle momentum distribution,

n(k) = (2π)−3
∫

dr1dr
′
1 e

−k(r′1−r1) ρ[1](r1, r
′
1), (5.7)

where ρ[1](r1, r
′
1) is the one-particle reduced density matrix defined in Eq. 5.1. The

normalizations are given by
∫

dr ρ[1](r, r) = V
¦

and
∫

dkn(k) = 1. For isentropic

homogeneous systems, the one-particle reduced density matrix is only a function

of |r − r′|, which allows one to introduce the function n(|r − r′|) ≡ ρ[1](r, r′) with

n(0) = 1. It represents the distribution function of the separation of open ends in a

PIMC simulation with one open path.

Classical particles exhibit the Maxwellian momentum distribution. Therefore, the

single particle density matrix is a Gaussian,

n(k) =

(

λβ

π

)D/2

exp
{

−βλk2
}

(5.8)

n(r) = (4πλβ)−D/2 exp

{

− r2

4λβ

}

. (5.9)

For an ideal Fermi gas at T = 0, the momentum distribution is a Fermi function,

n(k) =

{

1/(8π3n) for k ≤ kF with kF = (6π2n)1/3

0 for k > kF
(5.10)

n(r) = 3/x3 [sin x− x cos x] with x = rkF . (5.11)
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Table 5.1: Minimal number of particles N required to observe the ith zero in the single
particle density matrix

i x = rkF N(L
2
) N(L

2

√
3)

1 4.493 12.2 2.4

2 7.725 62.3 12.0

3 10.904 175.1 33.7

4 14.067 376.0 72.4

The single particle density matrix n(r) is proportional to the spherical Bessel function

j1(x), which oscillates around zero. In the PIMC simulations, n(r) can be obtained

in form of a histogram, in which the separations of the open ends weighted with the

sign of the permutation are entered. At separations r where it is negative, odd per-

mutations leading negative contributions must outweigh even permutations making

positive contributions. |j1(x)| decays slowly as r−2, which requires macroscopic ex-

change cycles to occur. Those are solely a consequence of the discontinuity of n(k)

at k = kF .

Before we discuss results from PIMC simulation of interacting systems we will

examine the scaling behavior of the off-diagonal sampling method. In order to study

a certain number of oscillations in n(r), one can make a simple estimation of how

many particles are required. For this purpose, we neglect the fact that Eq. 5.11 was

derived in thermodynamic limit, N → ∞. In a simulation using a 3D box of size L,

one can directly measure n(r) up to L
2
and indirectly up to L

2

√
3. This leads to the

estimates for the required number of particles given in Tab. 5.1.

From this table, one can quickly realize that the computational demand grows

rapidly with the number of zeros i because N ∝ i3 and CPU time ∝ N 3 ∝ i6.

Furthermore, it should be noted that one needs to go to sufficiently low temperatures

to observe the fermionic effects and that the CPU time scales linearly with the number

of time slices. Additionally, positive and negative contributions cancel, which leads to

fluctuations in the observables. The fluctuation do not increase as rapidly as for the

direct fermion method (see section 2.6.5) since we still use a nodal restriction but one

needs converged results from all cycle lengths, which becomes increasingly difficult

at low temperature. A detailed analysis of the scaling behavior with temperature

remains to be done.

As a first application of the off-diagonal density matrix sampling method, we

chose to study the electron gas because of its simplicity. The method can be easily

extended to hydrogen or spin-polarized hydrogen. We looked at a system of 33 closed

shell spin-parallel electrons at a density of rs = 4.0 (TF = 57 694K) and selected
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Figure 5.2: n(r) for systems of 33 spin-parallel electrons at T = 125 000K and rs = 4.0
(TF = 57 694K) (solid line). At this temperature, fermionic effects are only a small
correction to the classical behavior. Therefore negative contributions (dash-dotted line)
are negligible and the sum of the positive contributions (dotted line) are almost identical
to the full n(r). We also found that the repulsive interactions do not lead to significant
modification to the non-interacting case given by the Gaussian function in Eq. 5.9.
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Figure 5.3: n(r) from the system shown in Fig. 5.2 but here for a significantly lower
temperature of T = 15 625K, where fermionic effects dominate (TF = 57 694K). This
leads to negative regions in n(r), as expected from the zero temperature limit given by
Eq. 5.11. In these regions, odd permutations from exchange cycles with an even number
of particles dominate. The functions decrease rapidly at r = L/2 = 10.3 as a result of
finite size effects because the minimum image method is applied.
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Figure 5.4: n(r)r2 from Fig. 5.2 using the same line styles. The extra r2 factor em-
phasizes the small fermionic effects that lead to some negative contributions.
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Figure 5.5: n(r)r2 from Fig. 5.3 (thick lines). It shows the oscillating behavior of
n=n(r) in fermionic systems (Eq. 5.11). One finds 3 zeros as expected for free particles
(see table 5.1). The thin lines show finite size corrections for r > L/2 = 10.3.
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Figure 5.6: Momentum distribution n(k) (◦) for a finite system of 33 spin-parallel
electrons at T = 125 000K and rs = 4.0 (TF = 57 694K) also studied in Fig. 5.2. The ¤
symbols show the momentum distribution for a finite system of non-interacting fermions
under these conditions and the ♦ display the Maxwell-Boltzmann distribution.
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Figure 5.7: Momentum distribution n(k) as in Fig. 5.6 but for a lower temperature of
15 625K. This leads to a degenerate Fermi gas described by a Fermi-Dirac distribution,
which is also shown for a system of 33 non-interacting fermions at this T (¤) and at
zero temperature (solid line). The difference to the Maxwell-Boltzmann distribution (♦)
is substantial.
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the two temperatures 125 000 and 15 625K that represent the classical case at high

temperature and, respectively, the degenerate electron gas at low temperature. For

125 000K, the observed reduced density matrix n(r) in Fig. 5.2 is in good approxi-

mation the classical Gaussian function. Due to the high temperature, permutations

are relatively rare. Their contribution can be seen best in Fig. 5.4 where r2n(r) is

shown. Since we multiplied by the volume element ∝ r2, the graph can be interpreted

as the probability of finding the two ends of the open path separated by r. The cor-

responding momentum distribution n(k) in Fig. 5.6 was calculated directly from MC

average,

n(k) ∝
〈

eik(r−r′)
〉

, (5.12)

rather then using a Fourier transform of n(r), which would have required an extrap-

olation for large r or to store n(r) on a 3D grid because the spherical symmetry

is broken by the cubic simulation box. The observed momentum distribution lies

between the Maxwell-Boltzmann distribution and the Fermi distribution for the cor-

responding non-interacting finite system. All three curves are rather close together

because the simulation is performed in a classical regime. The deviations of the PIMC

result from the free Fermi distribution show the effect of the repulsive interactions

between the electrons, which leads to a depletion of the occupation probability at

small k values.

This effect is also present in the low temperature results at 15 625K where one finds

a degenerate electrons gas. The momentum distribution in Fig. 5.7 is a Fermi function

rather than a Maxwell-Boltzmann distribution, which can reach arbitrarily higher

occupation for k = 0 because it is not limited by the Pauli exclusion principle. The

solid line denotes the ideal Fermi gas at T = 0 given by Eq. 5.10. Thermal excitations

as well as the Coulomb interaction lead to the population of momentum states above

the ideal Fermi momentum. For interacting systems at T = 0, a discontinuity in the

momentum distribution is still present but some states are pushed to higher k-values

(Ortiz and Ballone, 1994). The comparison with the ideal Fermi gas at T = 0 gives an

estimate for the thermal excitations at this temperature. The degree of degeneracy is

rather high, which has a significant consequence for the reduced density matrix shown

in Figs. 5.3 and 5.5. The latter graph shows how positive contributions dominate at

small separations r. Then the function goes through zero and even permutations

dominate. After that, it becomes positive again and finally approaches zero near r ≈
L/2
√
3, which is in good agreement with the estimate given in Tab. 5.1. We corrected

for the finite size effects for r > L/2 by dividing out the reduction in the volume

element. This correction could also have been done by using the Fourier transform of
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the sampled n(k) but it would have required n(k) a higher number of k-vectors than

we kept. The figure also shows that the magnitude of the positive and the negative

contributions still grows for r >
∼ 10 but their difference is smaller, which leads to the

expected decay of n(r). The reason why the magnitude of the positive and negative

contributions still increases can be understood from Fig. 5.8 where the contributions

from the individual cycle lengths are shown. Generally, one finds that cycles of an odd

(even) number of particles lead mainly to positive (negative) contributions despite the

possibility that permutations of nearby closed paths could change the sign since it

is the sign of the total permutation that enters in the average. At small separations

the positive contributions from open 1-cycles dominate. Two particle permutations

give rise to the biggest fraction of negative contributions for r <
∼ 10. For r >

∼ 10,

the contributions from ν = 3 and longer cycles still increase because the average

separation of an open cycle of length ν is given by
√
4λβν = 6.4

√
ν. The cancellation

between odd and even cycles makes the n(r) function decay faster than its positive

and negative summands.
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Figure 5.8: Distribution r2n(r) from Fig. 5.5 split into the different permutation cycles,
shown for 1 to 6 particles. Cycles with an odd number of particles mainly lead to positive
contributions and those even numbers to negative contributions. The thins lines show the
finite size corrections for r > L/2 = 10.3. The figure shows how the distribution of the
different cycles in the restricted path integral method lead to the oscillations in the n(r)
function at sufficiently low T .
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5.4 Natural orbitals

5.4.1 Motivation

The two particle density matrix is of particular relevance for the understanding of

quantum-mechanical many body systems. It contains more information than can

be extracted from diagonal density matrix elements only and can be used to study

eigenstates, their energies and the thermal excitations in the system. It is important

for the characterization of the electronic excitations in the hydrogen plasma. In prin-

ciple, one can determine the different electronic states and calculate the occupation

probabilities. These are important for the radiative properties of the plasma and

allow one to calculate absorption and emission spectra. The purpose of the following

calculation is to determine the electronic excitations from a first principles calcula-

tion, which can then enter subsequent plasma models as an alternative to results from

chemical models, in which the occupation numbers are estimated from the chemical

equilibrium of approximately known eigenstates.

Furthermore, one would like to have a way to distinguish between free and bound

states. This information can be used to estimate dynamic properties such as the

conductivity. However, it has been proven to be a challenging task to give a rigorous

and also practical criterion for the definition of free and bound states. In our ap-

proach, we followed the ideas of Girardeau (1990), who suggested the use of the two

particle density matrix. Its eigenvalues are related to the occupation number and its

eigenvector are called natural orbitals. They are of particular importance for config-

uration interaction methods in quantum chemistry because they lead to the fastest

convergence (Szabo and Ostlund, 1996).

The two particle density matrix as defined in Eq. 5.2 requires path integral sim-

ulations with two open paths, which can be either of the same or of different par-

ticle type. One introduces relative and center-of-mass coordinates, r = r1 − r2 and

rcm = [m1r1+m2r2]/(m1+m2). In a translationally invariant system, the pair matrix

depends only on the separation of rcm − r′cm,

ρ[2](r, r′, rcm, r
′
cm) ≡ ρ[2](r, r′, rcm − r′cm) , (5.13)

and can be decomposed in its Fourier components (see Lebowitz et al. (1992) and

Macris and Martin (1994)),

ρ
[2]
k (r, r′) =

∫

V
¦
drcm e

−ikrcmρ[2](r, r′, rcm) . (5.14)
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If one averages over all momentum states one can write,

ρ[2](r, r′) = ρ2(r, r′, cos θ) =
∞
∑

l=0

4π

2l + 1
ρ
[2]
l (r, r′) Pl(cos θ) , (5.15)

where θ is the angle between r and r′. ρ[2]l (r,r
′) is a symmetric matrix with real and

positive eigenvalues nli. The eigenvectors φli(r) are the natural orbitals corresponding

to a pair of particles in the angular momentum state l,

ρ
[2]
l (r,r

′) =
∑

i

nli φli(r) φ
∗
li(r

′). (5.16)

The eigenvalues nli indicate occupation probability of the ith orbital with angular

momentum l and energy Eli given by,

nli =
1

Z
e−βEli , (5.17)

Z =
∑

li

e−βEli . (5.18)

It should be noted that the orbitals φli(r) and the energies Eli correspond to many-

particle states and are not the same as in single particle theory. However, the termi-

nology used here is very similar.

In this approach, we did not make a distinction between the discrete spectrum

of bound states and the continuum of free states. Both are included in the sum of

Eq. 5.16. Since we applied this method to PIMC simulations in a finite volume, free

states will have a discrete spectrum as well. In the simulation, one calculates the two

particle density matrix from the following by average,

ρ
[2]
l (x, x′) = 〈 δ(r − x) δ(r′ − x′) Pl(cos θ) 〉 . (5.19)

In the MC method with open path, one can calculate the relative occupation numbers

nli. The Boltzmann factor, e−βEli , and therefore the orbital energies Eli are not

directly available because the partition function Z cannot easily be calculated directly

in any MC. However, one can, in principle, use the internal energy E from a simulation

with closed paths and sets,

E =
∑

li

Eli nli , (5.20)

which is correct in the mean field approximation. From Eq. 5.17, it follows,

lnZ = −βE −
∑

li

nli lnnli , (5.21)
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which is equivalent to the expression for the free energy F = E − TS. This means

Z can be calculated from the occupation numbers nli generated by an off-diagonal

simulation and from the single particle energy E taken from diagonal density matrix

calculation. Then the energies of the orbital Eli follow from Eq. 5.17. The disadvan-

tage of this method is that it requires rather accurate estimates for all occupation

numbers including highly excited states. As a consequence, we were not able to deter-

mine the absolute occupation numbers and energies even for a simulation of a single

hydrogen atom in a periodic box, which will be discussed below.

This off-diagonal sampling method can be applied to different regimes in hydro-

gen. One can determine the electronic excitations in atoms by opening an electron

and a proton path. A pair of open proton paths can be used to study the formation

of hydrogen molecules. The eigenvectors then correspond to different rotational and

vibrational excitations. In the following sections, we show how this method can be ap-

plied in PIMC simulations and show preliminary results for the electronic excitations

in hydrogen.

5.4.2 Example: One Hydrogen Atom

The off-diagonal sampling procedure can be simplified for the application to the

electronic excitations in hydrogen. For all temperatures under consideration, the

thermal de Broglie wave length of the protons is small compared to the inter-particle

spacing and also much smaller than that of the electrons. Therefore, one can make the

protons classical within a first approximation. In this case, one replaces the proton

path by a point particle and needs only one open electron path. The pairs r and r′

in Eq. 5.15 are then given by the separation of the ends of the electron paths and

the proton. This has the advantage that one can average over all protons in a many

proton simulation discussed in section 5.4.3.

In the PIMC simulation, one calculates the matrices for a certain number of

angular momentum states using the average given by Eq. 5.16. We kept the matrices

for l ≤ 5 and used a uniform grid in real space with 50 points from r = 0 to L/2
√
3.

This includes an approximation because one does not consider the cubic symmetry

of the simulation cell. In the limit of a large cell, this approximation becomes more

and more accurate because the majority of the occupied natural orbitals only extends

over a fraction of the simulation cell and therefore is not affected by the boundary

conditions. The justification for using this basis is that one is generally interested

in systems where the natural orbitals are determined by the interactions rather than

by boundary effects. However, in systems where those are important, another basis
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Figure 5.9: Natural orbitals (solid lines) 1

r
φli(r) ≡ Rnl(r) with n = l + i for a single

hydrogen atom in a periodically repeated box of size L = 10.2, which were generated
from a simulation at T = 250 000K. The columns correspond to the eigenvectors with
angular momentum l calculated by diagonalizing the matrix ρl(r, r

′). The rows show
the ith eigenvector beginning with the highest eigenvalue corresponding to lowest energy
state. For n ≤ 3 the eigenstates of the isolated hydrogen atom are shown as dash-dotted
lines. The isolated 1s state is almost identical to the corresponding natural orbit and is
therefore hidden behind the other line.
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that includes the cubic symmetry is more appropriate. Suggestions have been made

by Shumway (1999).

The resulting matrices ρ
[2]
l (r, r′) are then diagonalized, which leads to natural

orbitals as eigenvectors and eigenvalues proportional to the occupation numbers. The

relative occupation numbers nli are obtained by dividing the eigenvalues by the sum

of the traces of all l matrices. We found that the contributions from different matrices

decay rapidly with l and that keeping matrices for l ≤ 5 is more than sufficient.

The resulting natural orbitals for a single hydrogen atom in a periodically repeated

box of size L = 10.2 are shown in Fig. 5.9. The displayed functions 1
r
φli(r) are

expected to approach the radial part Rnl(r) with n = i + l of the isolated hydrogen

atom in the limit of a large box size. The example reveals a ground state that

is identical within statistical and grid errors to the 1s ground state of the isolated

hydrogen atom. Studying the eigenvectors at any l with increasing excitations i,

one finds that one additional node is introduced at each step i. The states with

n = l + i > 1 are similar but not identical to those of the isolated hydrogen atom

because the finite size of the simulation cell L/2 = 5.1 does have an effect, which

leads to more localized eigenstates. One also notices that the level of numerical noise

in the eigenvectors increases with n. These effects seems to be the strongest near

the origin, which suggests that a different basis such as hydrogen orbitals would lead

to a lower noise level. Generally, one finds that the noise in the eigenvectors (using

the uniform spatial grid) increases for lower temperatures because the occupation

number of higher energy states becomes very small. In this case, the eigenvectors

are approximately degenerate (nli = nl i+1) and the noise causes that those states are

mixed in the diagonalization procedure. This explains why the noise level in the high

eigenvectors increase for lower temperature.

Studying the eigenvalues, one finds that there are a few large positive ones while

many others are small and some even negative. The occupation numbers are shown

in Fig. 5.10 as a function of temperature. One finds that the occupation probability

of the 1s ground state increases with decreasing T . Within the noise level of about

4%, it goes to 1 in the limit of low T . Furthermore, one finds that the occupation of

the 2s and 2p are almost the same despite the fact that the 2 eigenvalues come from

different matrices. The same argument holds for the 3s, 3p, and 3d level. One can

also calculate the differences in energy from the ratio of the occupation numbers. For

E2s −E1s, one finds 9.2 eV rather than 10.2 eV as expected for the isolated hydrogen

atom. These deviations increase if higher levels are studied because higher states are

more delocalized and therefore increasingly altered by the boundary effects.
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Figure 5.10: Cumulative plot of the occupation numbers for the 6 lowest eigenstates
(see Fig. 5.9) of a single hydrogen atom in a periodically repeated box of size L = 10.2
shown as a function of temperature.

5.4.3 Many-Particle Systems

The main purpose of the natural orbital analysis is to study many particle systems.

There, the situation is significantly more complicated because one has several protons

and it turns out to be difficult to generalize the decomposition in Eq. 5.15 to the many-

proton case because one has no a priori criterion to which proton a particular open

path configuration belongs. The problem exists for classical as well as for quantum

mechanical protons. However, there is a method that is conceptually correct but not

feasible for real applications. For a fixed configuration of protons, one would store

the electron two particle density matrix (re, r
′
e) as a N

D
g ×ND

g matrix where Ng is the

number of grid points in a spatial direction. After a sufficiently long MC simulation,

one finds a converged results for each matrix element and then can diagonalize the

matrix. For low temperature and low density the matrix is block diagonal and the

eigenvectors correspond to different localized electronic states, each corresponding

to a particular proton. This method shows how one would in principle generate the

eigenstates for a many particle system. However, it is not practical because it requires

the storage of this enormous matrix and extremely good statistics to fill all relevant

matrix elements. The following sections discuss how to approximate this result with

computationally feasible methods.
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Method A

In an off-diagonal PIMC simulation of spin-polarized hydrogen, there are N protons,

N − 1 closed electron paths and one open electron path that can be permuted with

the others electrons. The simplest approach to generalize the natural orbital method

to systems with several protons would be to loop over all protons rpi and to add all

pairs of (re−rpi, r′e−rpi) to the l matrices. Then the analysis proceeds like in the case

of the single hydrogen atom. The result for a system of 32 protons and spin-polarized

electrons at T = 10 000K and rs = 6 is shown in Fig. 5.11. We chose to study a

system of electrons in the same spin state, which prevents the formation of molecules

and simplifies the following analysis. Under this condition, one expects the electrons

mainly to be in the 1s ground state at one of the protons because the ideal Saha
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Figure 5.11: Natural orbitals calculated with method A for a system of 32 protons and
32 spin-polarized electrons at T = 10 000K and rs = 6.
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Table 5.2: Occupation numbers for the electron eigenstates in a system of 32 spin-
polarized hydrogen atoms at T = 10 000K and rs = 6.0 estimated by methods
A, B, and C.

Method 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

A 0.535 0.056 0.049 0.042 0.036 0.032 0.027 0.022 0.019 0.017

B 0.973 0.009 0.003 0.002 0.002 0.002 0.000 0.000 0.000 0.007

C 0.919 0.012 0.010 0.006 0.008 0.008 0.003 0.002 0.003 0.006

equation predicts an occupation probability of 0.9998 for the ground state. However,

the described analysis procedure (eigenvectors in Fig. 5.11 and occupation numbers in

Tab. 5.2) does not reproduce this result. Instead, it leads to a far too low occupation

of 0.535 and one finds a significant contribution from higher l components. These

contributions can be interpreted as an artifact of this analysis procedure, in which we

averaged over all protons, as can be understood from the following argument. If one

imagines the electron fixed in the 1s state at proton 1 the pairs of (re − rpi, r′e − rpi)
from another distant proton always give a small angle θ. The distribution of the

angles θ is very non-uniform since it is localized around θ = 0. Therefore those

contributions cannot be expressed as an s state.

Method B

In the next approach, we tried to eliminate the contributions from the distant protons

by only considering pairs of (re−rpi, r′e−rpi) from the two open ends and the nearest

proton. If the closest proton for the two ends is not the same then no pair is consid-

ered. The results from a simulation with the same parameter are given in Tab. 5.2.

They show that the electrons are mainly in 1s ground state as expected. However, the

drawback of this method is that it introduces a cut-off for the eigenstates displayed

in Fig. 5.12, which is unphysical in the limit of high density, where one expects to

find delocalized electronic states that cannot be represented by this approach.

Method C

In the following approach to this problem, we try to eliminate the contribution to the

matrices ρ
[2]
l (r, r′) from distant protons in a more elaborate way. We start from the

matrices generated by averaging over all protons but also record distribution of the

separation of the open ends n(r) during the PIMC simulation. In the final analysis

procedure, we used n(r) to subtract the contribution from a uniform background of

N − 1 protons from the generate matrices ρl(r, r
′). The idea behind it is that one
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Figure 5.12: Natural orbitals calculated with method B for the system studied in
Fig. 5.11.

imagines the electron to be in a certain orbital state at one proton. All other protons

lead to additional contributions that need to be subtracted afterwards. Assuming

that there is little correlation between the protons, one can model them by a uniform

background. The results are shown in Tab. 5.2 and in Fig. 5.13. This method re-

produces the high occupation of the 1s state and has also increased the level of the

numerical noise. It represents one possible way to deal with problem of multiple pairs

(r, r′) from different protons. However, this idea needs further investigation. One can

also imagine other methods that would exclude contributions from distant protons,

e.g one can introduce a cut-off or a localization function. The simplest system to test

new proposals is composed of one electron and two protons at low temperature. The

density matrix is then given by,
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Figure 5.13: Natural orbitals calculated with method C for the system studied in
Fig. 5.11.

ρ(r, r′) = A φ∗1s(r− rp1) φ1s(r′ − rp1) + A φ∗1s(r− rp2) φ1s(r′ − rp2) . (5.22)

The next more advanced system would include free states, and one could add a free

particle term B exp{−(r− r′)2/4λβ}. The coefficients A and B should be reproduced

in the analysis procedure. The main question is to find an appropriate basis to de-

compose the many body density matrix, which can be diagonalized with a reasonable

computational demand.

Method D

Another alternative to deal with the contributions from multiple protons can be

constructed by using the center of mass of the open polymer in order to select the

appropriate proton. We suggest to calculate the center of mass coordinate of the
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open paths and select the protons, whose center of mass is closest. Then we consider

only the separation of the open ends to this proton. This method has the advantage

that every open path configuration leads to only one contribution, that it does lead

to some localization of the generated pairs without introducing a sharp cut-off, which

would be inappropriate for the analysis of delocalized state such as plane waves. We

think that this procedure as well as method C should to be pursued further in order

to construct the natural orbitals in a dense many-particle system.
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Chapter 6

Conclusions

In this work, we have applied path integral Monte Carlo simulations (PIMC) to hot,

dense hydrogen and deuterium. Our goal was to determine the equation of state from

first principles and to elucidate the high temperature phase diagram. The main focus

was on explaining the structural changes that lead to a molecular, an atomic and

a plasma regime at low density and exhibit a metallic regime at high density. We

determine the equation of state in density and temperature range corresponding to

1 ≤ rs ≤ 14 and 5000 ≤ T ≤ 106K. The wide range of possible applications include

studies of the brown dwarfs and Jovian plants. Furthermore, the data can be used

in chemical models in order to fit free parameters, which then allows one to obtain

related properties with an improved accuracy.

We developed a variational density matrix (VDM) related to the variational meth-

ods at zero temperature. In our approach to dense hydrogen, we derived a VDM

that includes interactions and describes bound states, ionization, and dissociation

processes. In this approach, we used a single determinant with Gaussian orbitals.

Possible extensions include improved single particle orbitals, treating the exchange

terms with a higher accuracy and the consideration of correlation effects.

The VDM was developed with the motivation to replace the free particle nodes,

used in the PIMC simulations so far, with a more realistic density matrix that already

includes the principle physical effects in dense hydrogen. We carefully analyzed what

effect the improved nodal surfaces have on the thermodynamics properties derived

from PIMC simulations. The most significant changes were found in the regime

of the abrupt transition to a metallic state observed using PIMC simulations with

free particle nodes. Using VDM nodes, we found no evidence for a phase transition

in the parameter range under consideration. It remains to be determined if the

improvements in the nodes eliminated the plasma phase transition altogether or if it
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was shifted to temperatures below 5000 K.

An important part of our research was the comparison with laser shock wave ex-

periments. We performed a detailed analysis in the relevant density range of the

various approximations entering into PIMC simulations including different time steps

and system sizes as well as the type of nodal surface being employed. None of them

had a significant effect on the comparison, which showed that PIMC simulation in-

creased compressibility of 4.3± 0.1 on the shock Hugoniot and cannot reproduce the

experimental findings of values of about 6± 1. Further theoretical and experimental

work will be needed to resolve this discrepancy.

Furthermore, we extended the restricted path integral method to the sampling

with open path in order to calculate off-diagonal elements of the fermionic many-

body density matrix. As a first application to the electron gas, we could show how the

momentum distribution of interacting system changes from Maxwell-Boltzmann type

at high temperature to a Fermi-Dirac distribution at low temperature. In the path

integral formalism, this process is governed by an increasing number of permuting

paths, which contribute with different signs to the averages. In the future work, we

want to advance the method to lower temperatures, study its scaling behavior and

compare with zero temperature calculations.

We also used the off-diagonal sampling technique to determine the natural orbitals

of hydrogen at low density. The remaining challenge is how this method can be applied

to a many-body system at high density while keeping the computational demand at

a reasonable level.
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Appendix A

Variational Interaction Terms

The general equations for the variational parameters q in a parameterized density

matrix, from Eq. 3.19, are
1

2

∂H

∂~q
+
↔
N ~̇q = 0 (A.1)

where

H ≡
∫

ρHρ dR =

∫

ρHρIdR (A.2)

and the norm matrix

Nji ≡
∫

pj pi ρ
2 dR = lim

q′→q

∂2N

∂qj∂q′i
(A.3)

with

N ≡
∫

ρ(R, ~q ; β) ρ(R, ~q ′ ; β) dR . (A.4)

The subscript I in Eq. A.2 indicates that only one ρ needs to be antisymmetric

and the identity permutation can be used in the other. This appendix contains the

detailed formulae for these equations for a parameterized Gaussian density matrix

applied to a Coulomb system.

Repeating Eq. 3.56, the parameterized variational density matrix is an anti-

symmetrized product of one-particle density matrices,

ρ(R,R′, β) =
∑

P
εP
∏

k

ρ1(rk, r
′
Pk , β) (A.5)

=
∑

P
εPe

D
∏

k

(πwPk)
−3/2 exp

{

− 1

wPk
(rk −mPk)

2

}

, (A.6)

where the amplitude D and the widths wk and means mk are the variational param-

eters. We also dropped 1/N ! prefactors which are the same for the norm matrix and

thus cancel out. The permutation sum is over all permutations of identical particles
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(e.g. same spin electrons) and εP = ±1 is the permutation signature. The initial

conditions are wk = 0, mk = r′k, and D = 0.

For this ansatz the generator of the norm matrix,

N =
∑

P
εP
∏

k

[π(wk + w′Pk)]
−3/2 exp

{

−(mk −m′
Pk)

2/(wk + w′Pk)
}

exp(D +D′) .

For a periodic system the above equation also is summed over all periodic simulation

cell vectors, L, with mk −m′
Pk → mk −m′

Pk + L. Using this the components of the

norm matrix are then:

NDD =
∑

P
εPNP (A.7)

NmiD =
∑

P
εP

[−2(mi −mPi)

wi + wPi

]

NP (A.8)

NwiD =
∑

P
εP

( −1
wi + wPi

)[

3

2
− (mi −mPi)

2

wi + wPi

]

NP (A.9)

Nmimj
=

∑

P
εP





2δj,Pi
↔
I

wi + wj

+ 4
(mi −mPi)

(wi + wPi)

(mj −mP−1
j
)

(wj + wP−1
j
)



NP (A.10)

Nmiwj
=

∑

P
εP

[

δj,Pi
wi + wj

+
1

wj + wP−1
j

(

3

2
−

(mj −mP−1
j
)2

(wj + wP−1
j
)

)]

[

2(mi −mPi)

wi + wPi

]

NP

Nwiwj
=

∑

P
εP

{

δj,Pi
(wi + wPi)

2

[

3

2
− 2(mi −mPi)

2

wj + wPj

]

+
1

(wi + wPi)(wj + wP−1
j
)

[

3

2
− (mi −mPi)

2

wi + wPi

]

[

3

2
−

(mj −mP−1
j
)2

wj + wP−1
j

]}

NP (A.11)

where

NP = e2D
∏

j

exp
{

− (mj−mPj
)2

(wj+wPj )

}

(π(wj + wPj))
3/2

= NP−1 . (A.12)

The Hamiltonian for a periodic system of electrons and ions is given by,

H = −1

2

Ne
∑

i=1

∇2i +
∑∑

i<j

ψ(rij)−
∑

i

∑

I

ZIψ(riI) +
∑

i

UMad + Uions (A.13)

where the purely ionic terms are,

Uions =
∑∑

I<I′

ZIZI′ψ(rII′) +
∑

I

Z2IUMad . (A.14)
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The Ewald potential, ψ(r), which includes interactions with periodic images and

incorporates charge neutrality reads,

ψ(r) =
∑

L

erfc(G|r+ L|)
|r+ L|

+
∑

k6=0

4π

V¦k2
exp(−k2/4G2)− π

G2V¦
=
∑

k6=0

4π

V¦k2
exp(ik · r)

where V
¦

is the periodic cell volume and G an arbitrary constant. The Madelung term

in H is the interaction energy of an electron with it’s periodic images and neutralizing

background (e.g. UMad = −1.41865/L for a simple cubic simulation cell, the usual

case). To do the integrals, we represent the Gaussians by their Fourier series

(

2

πw

)3/2
∑

L

e−
2
w
(r−m−L)2 =

∑

k

1

V¦
e−k2w/8eik·(r−m) (A.15)

and in the interaction terms use the Fourier representation for ψ(r). This finally gives

H =
∑

P
εP {KP + UP}NP (A.16)

with

KP =
∑

i

[

3

wi + wPi

− 2
(mi −mPi)

2

(wi + wPi)2

]

(A.17)

UP =
∑

i

∑

j>i

W (m̃i − m̃j, w̃i + w̃j)−
∑

i

∑

I

ZIW (m̃i −RI , w̃i) +
∑

i

UMad + Uions

where w̃i ≡ wiwPi/(wi+wPi) and m̃i ≡ (miwPi+mPiwi)/(wi+wPi) . The interaction

integral

W (r, w) ≡
∑

k 6=0

4π

V¦k2
e−k2w/4eik·r (A.18)

is symmetric in r when the periodic cell has inversion symmetry. Continuing, the left

hand side of Eq. A.1 is

HD ≡ 1

2

∂H

∂D
= H (A.19)

Hwi
≡ 1

2

∂H

∂wi

=
1

2

∑

P
εP

{(

∂KP
∂wi

+
∂UP
∂wi

)

NP + (KP + UP)
∂NP
∂wi

}

(A.20)

Hmi
≡ 1

2

∂H

∂mi

=
1

2

∑

P
εP

{(

∂KP
∂mi

+
∂UP
∂mi

)

NP + (KP + UP)
∂NP
∂mi

}

(A.21)

with

∂NP
∂wi

=

[

− 3

wi + wPi

+ 2
(mi −mPi)

2

(wi + wPi)2

]

NP (A.22)
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∂NP
∂mi

=

[

−4(mi −mPi)

wi + wPi

]

NP (A.23)

∂KP
∂wi

=

[

− 6

(wi + wPi)2
+ 8

(mi −mPi)
2

(wi + wPi)3

]

(A.24)

∂KP
∂mi

=

[

−8 mi −mPi

(wi + wPi)2

]

. (A.25)

where we have used the fact that terms in Pi and P−1i give the same contribution

under the permutation sum and so combined them. The derivatives of the interaction

integral are,

∂UP
∂mi

=
2wPi

wi + wPi

[

∑

j 6=i

W[1](m̃i − m̃j, w̃i + w̃j)−
∑

I

ZIW
[1](m̃i −RI , w̃i)

]

∂UP
∂wi

=
2wPi

(wi + wPi)2

[

wPi

(

∑

j 6=i

W [2](m̃i − m̃j, w̃i + w̃j)−
∑

I

ZIW
[2](m̃i −RI , w̃i)

)

+ (mPi −mi) ·
(

∑

j 6=i

W[1](m̃i − m̃j, w̃i + w̃j)−
∑

I

ZIW
[1](m̃i −RI , w̃i)

)]

whereW[1] and W [2] denote the derivatives of W with the first and second argument.

Comparing equation A.18 and Eq. A.15 the interaction integral may be written as

W (r, w) = ψ(r)−
∑

L

erfc
[

|r+L|√
w

]

|r+ L|
+
πw

V¦
(A.26)

and its derivatives as:

W[1](r, w) = ∇ψ(r) +
∑

L

r+ L

|r+ L|3
(

erfc

[ |r+ L|√
w

]

+
2|r+ L|√

πw
exp(−|r+ L|2/w)

)

W [2](r, w) = −
∑

L

exp(−|r+ L|2/w)
w3/2
√
π

+
π

V¦
(A.27)

For an isolated system (L→∞) and these would simplify to,

W (r, w) =
erf [r/

√
w ]

r
(A.28)

W[1](r, w) = − r

r3

(

erf [r/
√
w ]− 2r√

πw
e−r2/w

)

(A.29)

W [2](r, w) = − 1

w
√
πw

e−r2/w (A.30)

At β = 0, the initial derivatives for the variational parameters reduce to

ẇi = 2 (A.31)

ṁi = 0 (A.32)

Ḋ = −UI (A.33)
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For large numbers of electrons, the computational requirements to treat all ex-

change terms increase drastically. Here the approximation discussed in section 3.7 is

used where the kinetic pair exchange corrections given there are added to the identity

permutation term derived here.
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Appendix B

Finite Temperature Jastrow Factor

The VDM method can be improved by including correlations that are missed in an

Hartree-Fock type ansatz. This is usually done in form of a Jastrow factor f(R,R’)

as shown in Eq. 3.79,

f(R,R′) = exp

{

−1

2

∑

i<j

u(rij) + u(r′ij)

}

. (B.1)

The Jastrow factor can be calculated at zero temperature using the RPA (see Ceper-

ley and Alder (1981)), then generalized to finite temperature and approximately ex-

pressed in the form (Pollock, 2000),

u(r) =
A

r

(

1− e−B r
)

, (B.2)

where r is the separation of the pair of particles. The coefficients A and B depend

on density n, inverse temperature β, and on the type of interacting particles. They

are derive that the fulfill the cusp condition at any temperature. The coefficients for

a pair of electrons is given by,

Aee = ct , c = 2
√

r3s/3 , t = tanh (β/c) , (B.3)

Bee =
√

2/Aee . (B.4)

For an electron and an ion of charge Q, they read,

Aei = −Qc
t

(

1− e−βt/c
)

(B.5)

Bei =
√

−4Q/Aei . (B.6)
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Appendix C

Debye Model

At sufficiently high temperature and low density, the hydrogen plasma behaves like a

system of free electrons and protons, which interact via a screened Coulomb potential

(Fowler and Guggenheim, 1965; Ebeling et al., 1976). The screening arises from a

cloud of opposite charge of the size of the Debye radius rD. Assuming full dissociation,

it is given by,

rD =
1

κ
, κ2 =

β

ε0

∑

species i

niQ
2
i . (C.1)

The screening leads to the following corrections uD and pD that are added internal

energy and pressure of non-interacting Fermi gas,

uD =
κ3

8πβn
, pD =

κ3

24πβ
. (C.2)

If Fermi statistics is not important the Debye corrections can be expressed in the

terms of the coupling parameter Γ (Eq. 1.4),

ED
Eid

=
Γ3/2√

6
,

pD
pid

=
√

2/3 Γ3/2 , (C.3)

where Eid and pid are the internal energy and pressure of a ideal gas of distinguishable

particles. The Debye screening represents the first correction to the free particle

behavior due to interactions in the limit of high temperature and low density. For

small values of Γ, the Debye model is a reliable approximation. One finds deviations of

less than 20% in pressure and energy for Γ < 0.5 in discussed density range. However,

at sufficiently high Γ, the Debye model overestimates the screening drastically and

predicts a too small rD, which leads to unphysically low, even negative pressures.
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Appendix D

Equation of State Tables

The following tables contain the equation of state from PIMC simulations of hydrogen

and deuterium using different time steps and nodal surfaces. It should be noted that

all simulations have been performed using order nA = 1 in the action expansion for the

off-diagonal pair density matrix (Eq. 2.38) and order nE = 2 in the energy expansion.

As discussed in section 4.1, there are corrections to pressure and energy due to higher

orders. They are particularly substantial for the pressure at low temperatures. In the

following table, we list the raw simulation data without the corrections.

Table D.1: Equation of state table with pressure and internal energy per atom for
hydrogen at the density of 0.000983 gcm−3 (rs = 14) calculated with PIMC simulations
of NP = 32 pairs of protons and electrons, using free particle nodes, a time step of
τ−1 = 106K, nA = 1 orders in the action expansion formula 2.38 and nE = 2 orders in
the energy expansion.

T (K) p (GPa) E (eV)

166 667 2.641 ± 0.001 41.091 ± 0.018

125 000 1.956 ± 0.001 29.979 ± 0.026

62 500 0.902 ± 0.002 11.827 ± 0.042

31 250 0.343 ± 0.001 -2.880 ± 0.046

15 625 0.143 ± 0.001 -11.298 ± 0.064

12 500 0.117 ± 0.001 -11.903 ± 0.032

10 000 0.094 ± 0.001 -12.429 ± 0.027

8929 0.085 ± 0.001 -12.652 ± 0.032

7812 0.076 ± 0.002 -12.971 ± 0.084

6944 0.063 ± 0.001 -13.476 ± 0.053

6250 0.059 ± 0.001 -14.189 ± 0.037

5000 0.053 ± 0.001 -14.708 ± 0.026
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Table D.2: EOS table for hydrogen at the density of 0.00270 gcm−3 (rs=10) calculated
with PIMC simulations using FP nodes, NP = 32, τ−1 = 106K, nA = 1 and nE = 2 (see
Tab. D.1)

T (K) p (GPa) E (eV)

166 667 7.166 ± 0.004 39.979 ± 0.024

125 000 5.264 ± 0.004 28.594 ± 0.027

62 500 2.342 ± 0.005 9.466 ± 0.053

31 250 0.879 ± 0.006 -4.885 ± 0.068

15 625 0.397 ± 0.006 -11.382 ± 0.043

12 500 0.323 ± 0.005 -11.945 ± 0.046

10 000 0.270 ± 0.003 -12.491 ± 0.039

8929 0.234 ± 0.004 -12.903 ± 0.033

7812 0.203 ± 0.004 -13.543 ± 0.028

6944 0.191 ± 0.004 -13.715 ± 0.035

6250 0.168 ± 0.004 -14.282 ± 0.073

5000 0.151 ± 0.004 -14.759 ± 0.018

Table D.3: EOS table for hydrogen at the density of 0.0105 gcm−3 (rs = 8) calculated
with PIMC simulations using FP nodes, NP = 32, τ = 106K, nA = 1 and nE = 2 (see
Tab. D.1)

T (K) p (GPa) E (eV)

166 667 13.770 ± 0.010 38.683 ± 0.036

125 000 10.060 ± 0.010 27.120 ± 0.037

625 00 4.337 ± 0.006 7.412 ± 0.034

31 250 1.639 ± 0.009 -5.848 ± 0.041

15 625 0.723 ± 0.012 -11.593 ± 0.037

12 500 0.630 ± 0.008 -12.062 ± 0.037

10 000 0.480 ± 0.006 -12.865 ± 0.028

8929 0.432 ± 0.005 -13.223 ± 0.025

7812 0.371 ± 0.007 -13.881 ± 0.044

6944 0.344 ± 0.006 -14.081 ± 0.050

6250 0.308 ± 0.004 -14.559 ± 0.019

5000 0.297 ± 0.006 -14.797 ± 0.019
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Table D.4: EOS table for hydrogen at the density of 0.0125 gcm−3 (rs = 6) calculated
with PIMC simulations using FP nodes, NP = 32, τ = 106K, nA = 1 and nE = 2 (see
Tab. D.1)

T (K) p (GPa) E (eV)

166 667 31.912 ± 0.021 36.602 ± 0.028

125 000 23.036 ± 0.018 24.734 ± 0.032

62 500 9.586 ± 0.020 4.727 ± 0.034

31 250 3.716 ± 0.012 -6.923 ± 0.027

15 625 1.672 ± 0.026 -11.783 ± 0.048

12 500 1.380 ± 0.025 -12.461 ± 0.059

10 000 1.096 ± 0.012 -13.171 ± 0.037

8929 0.992 ± 0.011 -13.472 ± 0.038

7812 0.884 ± 0.011 -13.843 ± 0.030

6944 0.808 ± 0.014 -14.269 ± 0.029

6250 0.769 ± 0.013 -14.368 ± 0.022

5000 0.676 ± 0.016 -14.938 ± 0.019

Table D.5: EOS table for hydrogen at the density of 0.0421 gcm−3 (rs = 4) calculated
with PIMC simulations using FP nodes, NP = 32, τ = 106K, nA = 1 and nE = 2 (see
Tab. D.1)

T (K) p (GPa) E (eV)

166 667 102.747 ± 0.131 32.261 ± 0.050

125 000 73.082 ± 0.111 20.229 ± 0.046

62 500 29.462 ± 0.131 1.051 ± 0.050

31 250 11.863 ± 0.066 -8.144 ± 0.017

25 000 9.075 ± 0.131 -9.809 ± 0.051

20 000 7.320 ± 0.141 -10.985 ± 0.053

15 625 5.530 ± 0.111 -12.057 ± 0.053

12 500 4.325 ± 0.162 -12.982 ± 0.059

10 000 3.700 ± 0.049 -13.543 ± 0.034

8929 3.353 ± 0.069 -13.909 ± 0.035

7812 3.065 ± 0.086 -14.222 ± 0.033

6944 2.893 ± 0.064 -14.382 ± 0.036

6250 2.622 ± 0.075 -14.605 ± 0.035

5000 2.307 ± 0.100 -14.943 ± 0.028
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Table D.6: EOS table for hydrogen at the density of 0.0999 gcm−3 (rs = 3) calculated
with PIMC simulations using FP nodes, NP = 32, τ = 106K, nA = 1 and nE = 2 (see
Tab. D.1). The last column shows the fraction of permuting electrons given by 1 − P1
(see section 2.6.8)

T (K) p (GPa) E (eV) 1− P1
166 667 234.381 ± 0.242 28.422 ± 0.042 0.00031 ± 0.00003

125 000 164.852 ± 0.212 16.489 ± 0.027 0.00065 ± 0.00004

62 500 67.526 ± 0.303 -1.166 ± 0.044 0.006 ± 0.001

31 250 27.763 ± 0.192 -8.961 ± 0.030 0.033 ± 0.006

25 000 21.410 ± 0.242 -10.282 ± 0.037 0.039 ± 0.002

20 000 17.428 ± 0.293 -11.297 ± 0.049 0.046 ± 0.004

15 625 13.602 ± 0.343 -12.260 ± 0.050 0.047 ± 0.005

12 500 11.462 ± 0.454 -13.087 ± 0.079 0.036 ± 0.004

10 000 10.600 ± 0.172 -13.593 ± 0.028 0.036 ± 0.003

8929 10.257 ± 0.151 -13.866 ± 0.027 0.022 ± 0.001

7812 9.433 ± 0.131 -14.220 ± 0.032 0.024 ± 0.002

6944 9.055 ± 0.141 -14.438 ± 0.028 0.016 ± 0.001

6250 8.498 ± 0.212 -14.593 ± 0.040 0.025 ± 0.005

5000 7.996 ± 0.212 -14.835 ± 0.018 0.017 ± 0.002

Table D.7: EOS table for deuterium at the density of 0.307 gcm−3 (rs=2.6) calculated
with PIMC simulations using FP nodes, NP = 32, τ = 106K, nA = 1 and nE = 2 (see
Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 248.561 ± 0.161 14.675 ± 0.020 0.003 ± 0.001

62 500 103.121 ± 0.344 -2.143 ± 0.038 0.017 ± 0.001

50 000 77.568 ± 0.217 -5.167 ± 0.025 0.030 ± 0.001

31 250 44.905 ± 0.235 -9.160 ± 0.022 0.076 ± 0.002

25 000 35.512 ± 0.366 -10.384 ± 0.029 0.105 ± 0.003

20 000 29.997 ± 0.228 -11.228 ± 0.024 0.129 ± 0.003

15 625 24.503 ± 0.325 -12.211 ± 0.023 0.136 ± 0.006

12 500 21.402 ± 0.399 -12.823 ± 0.030 0.134 ± 0.008

10 000 20.200 ± 0.309 -13.547 ± 0.024 0.092 ± 0.005

8929 19.038 ± 0.402 -13.822 ± 0.051 0.073 ± 0.007

7812 18.311 ± 0.455 -14.167 ± 0.045 0.063 ± 0.002

6944 17.574 ± 0.540 -14.374 ± 0.055 0.065 ± 0.004

6250 17.029 ± 0.413 -14.529 ± 0.042 0.060 ± 0.004

5000 15.817 ± 0.445 -14.736 ± 0.043 0.057 ± 0.003
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Table D.8: EOS table for deuterium at the density of 0.390 gcm−3 (rs=2.4) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 2 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 308 ± 5 13.2 ± 0.4 0.002 ± 0.000

62 500 134 ± 1 -2.5 ± 0.1 0.020 ± 0.002

31 250 60 ± 3 -9.4 ± 0.2 0.102 ± 0.004

15 625 34 ± 4 -12.1 ± 0.3 0.204 ± 0.008

10 000 17 ± 5 -14.0 ± 0.4 0.225 ± 0.014

Table D.9: EOS table for deuterium at the density of 0.506 gcm−3 (rs=2.2) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 2 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 411 ± 2 13.3 ± 0.1 0.004 ± 0.000

62 500 183 ± 5 -2.5 ± 0.3 0.032 ± 0.001

31 250 84 ± 3 -9.4 ± 0.2 0.172 ± 0.005

15 625 50 ± 5 -12.0 ± 0.3 0.302 ± 0.005

10 000 36 ± 5 -13.5 ± 0.3 0.320 ± 0.010
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Table D.10: EOS table for deuterium at the density of 0.674 gcm−3 (rs=2.0) calculated
with PIMC simulations using FP nodes, NP = 32, τ−1B = 2 ·106K, τ−1F = 8 ·106K, nA = 1
and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
1 000 000 5433 ± 5 245.7 ± 0.3 0.000 ± 0.000

500 000 2624 ± 4 113.2 ± 0.2 0.000 ± 0.000

250 000 1225 ± 3 45.7 ± 0.1 0.000 ± 0.000

125 000 548 ± 2 12.2 ± 0.1 0.008 ± 0.000

62 500 246 ± 2 -3.1 ± 0.1 0.081 ± 0.001

31 250 125 ± 2 -9.1 ± 0.1 0.365 ± 0.003

15 625 75 ± 3 -11.7 ± 0.1 0.701 ± 0.003

10 000 63 ± 5 -12.5 ± 0.2 0.829 ± 0.004

7812 51 ± 4 -13.5 ± 0.2 0.833 ± 0.010

5000 68 ± 9 -14.4 ± 0.4 0.629 ± 0.007

Table D.11: EOS table for deuterium at the density of 0.674 gcm−3 (rs=2.0) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 2 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 540 ± 14 11.7 ± 0.6 0.008 ± 0.001

62 500 236 ± 7 -3.7 ± 0.3 0.071 ± 0.005

31 250 128 ± 5 -9.2 ± 0.2 0.271 ± 0.006

15 625 59 ± 9 -12.8 ± 0.4 0.459 ± 0.009

10 000 48 ± 10 -13.6 ± 0.5 0.534 ± 0.010

7812 53 ± 12 -13.7 ± 0.5 0.557 ± 0.011

5000 26 ± 25 -15.3 ± 1.2 0.666 ± 0.016
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Table D.12: EOS table for deuterium at the density of 0.838 gcm−3 (rs=1.86) calculated
with PIMC simulations using FP nodes, NP = 32, τ−1B = 2 ·106K, τ−1F = 8 ·106K, nA = 1
and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
1 000 000 6752 ± 8 245.3 ± 0.3 0.000 ± 0.000

500 000 3245 ± 5 111.9 ± 0.2 0.000 ± 0.000

250 000 1506 ± 3 44.3 ± 0.1 0.000 ± 0.000

125 000 688 ± 3 11.7 ± 0.1 0.013 ± 0.000

62 500 307 ± 1 -3.6 ± 0.0 0.133 ± 0.001

31 250 166 ± 3 -9.1 ± 0.1 0.488 ± 0.002

15 625 107 ± 7 -11.5 ± 0.3 0.804 ± 0.002

10 000 85 ± 5 -12.4 ± 0.2 0.896 ± 0.001

7812 69 ± 7 -13.0 ± 0.3 0.919 ± 0.001

5000 93 ± 12 -14.4 ± 0.5 0.864 ± 0.005

Table D.13: EOS table for deuterium at the density of 0.838 gcm−3 (rs=1.86) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 2 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 654 ± 16 10.3 ± 0.6 0.017 ± 0.002

62 500 322 ± 5 -3.1 ± 0.2 0.122 ± 0.004

31 250 169 ± 6 -9.3 ± 0.2 0.351 ± 0.005

15 625 102 ± 10 -12.2 ± 0.4 0.562 ± 0.010

10 000 97 ± 13 -12.5 ± 0.5 0.674 ± 0.009

7812 69 ± 27 -13.8 ± 1.0 0.689 ± 0.015

5000 49 ± 25 -14.7 ± 1.0 0.777 ± 0.009

Table D.14: EOS table for deuterium at the density of 1.01 gcm−3 (rs=1.75) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 2 · 106K, τ−1F = 4 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
125 000 815 ± 6 10.6 ± 0.2 0.023 ± 0.001

62 500 377 ± 9 -4.0 ± 0.3 0.177 ± 0.007

31 250 199 ± 15 -9.9 ± 0.4 0.435 ± 0.009

15 625 162 ± 16 -11.3 ± 0.5 0.675 ± 0.017

10 000 138 ± 37 -12.3 ± 1.1 0.755 ± 0.015
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Table D.15: EOS table for deuterium at the density of 1.60 gcm−3 (rs=1.50) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 4 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
250 000 2865 ± 12 41.2 ± 0.2 0.006 ± 0.000

125 000 1328 ± 24 9.5 ± 0.5 0.070 ± 0.003

62 500 676 ± 26 -3.9 ± 0.5 0.340 ± 0.005

31 250 409 ± 58 -9.3 ± 1.1 0.650 ± 0.011

15 625 403 ± 104 -9.9 ± 2.0 0.821 ± 0.013

Table D.16: EOS table for deuterium at the density of 2.76 gcm−3 (rs=1.25) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 4 · 106K, τ−1F = 8 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
250 000 5043 ± 37 39.5 ± 0.4 0.024 ± 0.001

125 000 2477 ± 30 9.2 ± 0.3 0.222 ± 0.005

62 500 1509 ± 88 -2.1 ± 1.0 0.568 ± 0.008

31 250 1068 ± 93 -7.3 ± 1.1 0.813 ± 0.008

15 625 960 ± 174 -8.9 ± 2.0 0.911 ± 0.002

Table D.17: EOS table for deuterium at the density of 5.39 gcm−3 (rs=1.0) calculated
with PIMC simulations using VDM nodes, NP = 32, τ−1B = 8 · 106K, τ−1F = 16 · 106K,
nA = 1 and nE = 2 (see Tab. D.6)

T (K) p (GPa) E (eV) 1− P1
500 000 20814 ± 143 101.5 ± 0.8 0.009 ± 0.000

250 000 10545 ± 153 39.8 ± 0.9 0.122 ± 0.003

125 000 6343 ± 221 14.6 ± 1.3 0.485 ± 0.007

62 500 4877 ± 404 5.9 ± 2.3 0.785 ± 0.003
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